AIM: To develop a new rat model we wanted to gain a better understanding of stricture formation in Crohn’s disease (CD).METHODS: Chronic colitis was induced locally by the administration of 2,4,6-trinitrob...AIM: To develop a new rat model we wanted to gain a better understanding of stricture formation in Crohn’s disease (CD).METHODS: Chronic colitis was induced locally by the administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS). The relapsing inflammation characteristic to CD was mimicked by repeated TNBS treatments. Animals were randomly divided into control, once, twice and three times TNBS-treated groups. Control animals received an enema of saline. Tissue samples were taken from the strictured colonic segments and also adjacent proximally and distally to its 60, 90 or 120 d after the last TNBS or saline administrations. The frequency and macroscopic extent of the strictures were measured on digital photographs. The structural features of strictured gut wall were studied by light- and electron microscopy. Inflammation related alterations in TGF-beta 2 and 3, matrix metalloproteinases 9 (MMP9) and TIMP1 mRNA and protein expression were determined by quantitative real-time PCR and western blot analysis. The quantitative distribution of caspase 9 was determined by post-embedding immunohistochemistry.RESULTS: Intestinal strictures first appeared 60 d after TNBS treatments and the frequency of them increased up to day 120. From day 90 an intact lamina epithelialis, reversible thickening of lamina muscularis mucosae and irreversible thickening of the muscularis externa were demonstrated in the strictured colonic segments. Nevertheless the morphological signs of apoptosis were frequently seen and excess extracellular matrix deposition was recorded between smooth muscle cells (SMCs). Enhanced caspase 9 expression on day 90 in the SMCs and on day 120 also in myenteric neurons indicated the induction of apoptosis. The mRNA expression profile of TGF-betas after repeated TNBS doses was characteristic to CD, TGF-beta 2, but not TGF-beta 3 was up-regulated. Overexpression of MMP9 and down-regulation of TIMP1 were demonstrated. The progressive increase in the amount of MMP9 protein in the strictures was also obvious between days 90 and 120 but TIMP1 protein was practically undetectable at this time.CONCLUSION: These findings indicate that aligned structural and molecular changes in the gut wall rather than neuronal cell death play the primary role in stricture formation.展开更多
AIM To investigate the intestinal segment-specific effects of diabetes and insulin replacement on the density of different subpopulations of submucous neurons. METHODS Ten weeks after the onset of type 1 diabetes samp...AIM To investigate the intestinal segment-specific effects of diabetes and insulin replacement on the density of different subpopulations of submucous neurons. METHODS Ten weeks after the onset of type 1 diabetes samples were taken from the duodenum, ileum and colon of streptozotocin-induce diabetic, insulin-treated diabetic and sex-and age-matched control rats. Whole-mount preparations of submucous plexus were prepared from the different gut segments for quantitative fluorescent immunohistochemistry. The following double-immunostainings were performed: neuronal nitric oxide synthase(n NOS) and Hu C/D, heme oxygenase(HO) 1 and peripherin, as well as HO2 and peripherin. The density of n NOS-, HO1-and HO2-immunoreactive(IR) neurons was determined as a percentage of the total number of submucous neurons. RESULTS The total number of submucous neurons and the proportion of n NOS-, HO1-and HO2-IR subpopulations were not affected in the duodenal ganglia of control, diabetic and insulin-treated rats. While the total neuronal number did not change in either the ileum or the colon, the density of nitrergic neurons exhibited a 2-and 3-fold increase in the diabetic ileum and colon, respectively, which was further enhanced after insulin replacement. The presence of HO1-and HO2-IR submucous neurons was robust in the colon of controls(38.4%-50.8%), whereas it was significantly lower in the small intestinal segments(0.0%-4.2%, P < 0.0001). Under pathophysiological conditions the only alteration detected was an increase in the ileum and a decrease in the colon of the proportion of HO-IR neurons in insulin-treated diabetic animals. CONCLUSION Diabetes and immediate insulin replacement induce the most pronounced region-specific alterations of n NOS-, HO1-and HO2-IR submucous neuronal density in the distal parts of the gut.展开更多
基金Supported by Hungarian Scientific Research Fund,No.OTKA PD 108309 to Bódi Nthe János Bolyai Research Scholarship of the Hungarian Academy of Sciences to Bagyánszki M
文摘AIM: To develop a new rat model we wanted to gain a better understanding of stricture formation in Crohn’s disease (CD).METHODS: Chronic colitis was induced locally by the administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS). The relapsing inflammation characteristic to CD was mimicked by repeated TNBS treatments. Animals were randomly divided into control, once, twice and three times TNBS-treated groups. Control animals received an enema of saline. Tissue samples were taken from the strictured colonic segments and also adjacent proximally and distally to its 60, 90 or 120 d after the last TNBS or saline administrations. The frequency and macroscopic extent of the strictures were measured on digital photographs. The structural features of strictured gut wall were studied by light- and electron microscopy. Inflammation related alterations in TGF-beta 2 and 3, matrix metalloproteinases 9 (MMP9) and TIMP1 mRNA and protein expression were determined by quantitative real-time PCR and western blot analysis. The quantitative distribution of caspase 9 was determined by post-embedding immunohistochemistry.RESULTS: Intestinal strictures first appeared 60 d after TNBS treatments and the frequency of them increased up to day 120. From day 90 an intact lamina epithelialis, reversible thickening of lamina muscularis mucosae and irreversible thickening of the muscularis externa were demonstrated in the strictured colonic segments. Nevertheless the morphological signs of apoptosis were frequently seen and excess extracellular matrix deposition was recorded between smooth muscle cells (SMCs). Enhanced caspase 9 expression on day 90 in the SMCs and on day 120 also in myenteric neurons indicated the induction of apoptosis. The mRNA expression profile of TGF-betas after repeated TNBS doses was characteristic to CD, TGF-beta 2, but not TGF-beta 3 was up-regulated. Overexpression of MMP9 and down-regulation of TIMP1 were demonstrated. The progressive increase in the amount of MMP9 protein in the strictures was also obvious between days 90 and 120 but TIMP1 protein was practically undetectable at this time.CONCLUSION: These findings indicate that aligned structural and molecular changes in the gut wall rather than neuronal cell death play the primary role in stricture formation.
基金Supported by the Hungarian Scientific Research Fund,OTKA grant,No.PD 108309(Nikolett Bódi)by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences(Mária Bagyánszki)by the Stipendium Hungaricum Scholarship,No.2015-SH-500041,Tempus Public Foundation(Lalitha Chandrakumar)
文摘AIM To investigate the intestinal segment-specific effects of diabetes and insulin replacement on the density of different subpopulations of submucous neurons. METHODS Ten weeks after the onset of type 1 diabetes samples were taken from the duodenum, ileum and colon of streptozotocin-induce diabetic, insulin-treated diabetic and sex-and age-matched control rats. Whole-mount preparations of submucous plexus were prepared from the different gut segments for quantitative fluorescent immunohistochemistry. The following double-immunostainings were performed: neuronal nitric oxide synthase(n NOS) and Hu C/D, heme oxygenase(HO) 1 and peripherin, as well as HO2 and peripherin. The density of n NOS-, HO1-and HO2-immunoreactive(IR) neurons was determined as a percentage of the total number of submucous neurons. RESULTS The total number of submucous neurons and the proportion of n NOS-, HO1-and HO2-IR subpopulations were not affected in the duodenal ganglia of control, diabetic and insulin-treated rats. While the total neuronal number did not change in either the ileum or the colon, the density of nitrergic neurons exhibited a 2-and 3-fold increase in the diabetic ileum and colon, respectively, which was further enhanced after insulin replacement. The presence of HO1-and HO2-IR submucous neurons was robust in the colon of controls(38.4%-50.8%), whereas it was significantly lower in the small intestinal segments(0.0%-4.2%, P < 0.0001). Under pathophysiological conditions the only alteration detected was an increase in the ileum and a decrease in the colon of the proportion of HO-IR neurons in insulin-treated diabetic animals. CONCLUSION Diabetes and immediate insulin replacement induce the most pronounced region-specific alterations of n NOS-, HO1-and HO2-IR submucous neuronal density in the distal parts of the gut.