Ambient-air,moisture-assisted annealing is widely used in fabricating perovskite solar cells(PSCs).However,the inherent sensitivity of perovskite intermediate-phase to moisture—due to fast and spontaneous intermolecu...Ambient-air,moisture-assisted annealing is widely used in fabricating perovskite solar cells(PSCs).However,the inherent sensitivity of perovskite intermediate-phase to moisture—due to fast and spontaneous intermolecular exchange reaction—requires strict control of ambient humidity and immediate thermal annealing treatment,raising manufacturing costs and causing fast nucleation of perovskite films.We report herein a self-buffered molecular migration strategy to slow down the intermolecular exchange reaction by introducing a n-butylammonium bromide shielding layer,which limits moisture diffusion into intermediate-phase film.This further endows the notably wide nucleation time and humidity windows for perovskite crystallization in ambient air.Consequently,the optimized 1.68 e V-bandgap n-i-p structured PSC reaches a record-high reverse-scan(RS)PCE of 22.09%.Furthermore,the versatility and applicability of as-proposed self-buffered molecular migration strategy are certified by employing various shielding materials and 1.53 eV-/1.77 eV-bandgap perovskite materials.The n-i-p structured PSCs based on 1.53 eV-and 1.77 eV-bandgap perovskite films achieve outstanding RS PCEs of 25.23%and 19.09%,respectively,both of which are beyond of the state-of-the-art ambient-air processed PSCs.展开更多
Piezocatalysis has attracted unprecedented research interest as a newly emerging catalysis technology.However,the inherent insulating property of ferroelectric materials ultimately leads to the poor vibration-electric...Piezocatalysis has attracted unprecedented research interest as a newly emerging catalysis technology.However,the inherent insulating property of ferroelectric materials ultimately leads to the poor vibration-electricity conversion ability.Herein,this work reports the(K_(0.52)Na_(0.48))NbO_(3) ferroelectric ceramics(KNNFCx),for which the FeCo modification strategy is proposed.The substitution of the moderate amount of FeCo(x=0.015)at Nb site not only optimizes ferroelectricity but also produces beneficial defects,notably increasing Rhodamine B water purification efficiency to 95%.The pinning effect of monovalent oxygen vacancies on ferroelectric domains is responsible for the excellent ferroelectric polarization of KNNFC0.015 through the generation of an internal field to promote charge carriers separation and reduce nonradiative recombination.Importantly,the accompanying electron carriers can easily move to the material surface and participate in redox reactions because they have low activation energy.Therefore,ferroelectric polarization and defects play synergetic roles in enhancing piezocatalytic performance.展开更多
基金the financial support from the National Key R&D Program of China(2021YFF0500500)the National Natural Science Foundation of China(62474131,62274132,and 62204189)。
文摘Ambient-air,moisture-assisted annealing is widely used in fabricating perovskite solar cells(PSCs).However,the inherent sensitivity of perovskite intermediate-phase to moisture—due to fast and spontaneous intermolecular exchange reaction—requires strict control of ambient humidity and immediate thermal annealing treatment,raising manufacturing costs and causing fast nucleation of perovskite films.We report herein a self-buffered molecular migration strategy to slow down the intermolecular exchange reaction by introducing a n-butylammonium bromide shielding layer,which limits moisture diffusion into intermediate-phase film.This further endows the notably wide nucleation time and humidity windows for perovskite crystallization in ambient air.Consequently,the optimized 1.68 e V-bandgap n-i-p structured PSC reaches a record-high reverse-scan(RS)PCE of 22.09%.Furthermore,the versatility and applicability of as-proposed self-buffered molecular migration strategy are certified by employing various shielding materials and 1.53 eV-/1.77 eV-bandgap perovskite materials.The n-i-p structured PSCs based on 1.53 eV-and 1.77 eV-bandgap perovskite films achieve outstanding RS PCEs of 25.23%and 19.09%,respectively,both of which are beyond of the state-of-the-art ambient-air processed PSCs.
基金supported by the National Natural Science Foundation of China (Nos.52172116 and 62171214)the Natural Science Basic Research Program of Shaanxi (Nos.2021JQ-655,2020JQ-828,2021JQ-188,2021JM-442,and 2020JQ-822)+2 种基金the Shaanxi Provincial Association of Science and Technology Youth Talents Lifting Plan (No.20180418)the Scientific Research Foundation for Ph.D.of Xi’an Polytechnic University (No.BS201877)the Special Scientific Research Project in Shaanxi Province Department of Education (No.21JK0653).
文摘Piezocatalysis has attracted unprecedented research interest as a newly emerging catalysis technology.However,the inherent insulating property of ferroelectric materials ultimately leads to the poor vibration-electricity conversion ability.Herein,this work reports the(K_(0.52)Na_(0.48))NbO_(3) ferroelectric ceramics(KNNFCx),for which the FeCo modification strategy is proposed.The substitution of the moderate amount of FeCo(x=0.015)at Nb site not only optimizes ferroelectricity but also produces beneficial defects,notably increasing Rhodamine B water purification efficiency to 95%.The pinning effect of monovalent oxygen vacancies on ferroelectric domains is responsible for the excellent ferroelectric polarization of KNNFC0.015 through the generation of an internal field to promote charge carriers separation and reduce nonradiative recombination.Importantly,the accompanying electron carriers can easily move to the material surface and participate in redox reactions because they have low activation energy.Therefore,ferroelectric polarization and defects play synergetic roles in enhancing piezocatalytic performance.