Conventional bioplastic production from seaweed often relies on extraction processes that are costly,time-consuming,and yield limited product.This study presents a direct fabrication method using Gracilaria sp.,a red ...Conventional bioplastic production from seaweed often relies on extraction processes that are costly,time-consuming,and yield limited product.This study presents a direct fabrication method using Gracilaria sp.,a red seaweed rich in polysaccharides,to produce bioplastic films without the need for extraction.Sorbitol was incorporated as a plasticizer at concentrations of 0%–10%(w/w)to modify film characteristics.Thermal analysis revealed improved stability at moderate sorbitol levels(5%–7%),while excessive plasticizer slightly reduced thermal resistance.Mechanical testing showed that sorbitol increased film flexibility and elongation at break,though tensile strength and stiffness declined.Tear strength followed a non-linear trend,with improvement observed at higher sorbitol concentrations.Seal strength also increased,peaking at 7%,indicating stronger interfacial bonding between film layers.Biodegradation tests demonstrated accelerated decomposition with increased sorbitol content,achieving complete degradation within 30 days at 10% concentration.Color analysis showed increased brightness and reduced yellowing,enhancing the visual quality of the films.These results confirm that direct conversion of bioplastic is both feasible and effective.Sorbitol plays a key role in tuning film properties,offering a low-cost,scalable pathway to biodegradable materials suitable for environmentally friendly packaging applications.展开更多
基金funded by IAEA Coordinated Research Project F22081.
文摘Conventional bioplastic production from seaweed often relies on extraction processes that are costly,time-consuming,and yield limited product.This study presents a direct fabrication method using Gracilaria sp.,a red seaweed rich in polysaccharides,to produce bioplastic films without the need for extraction.Sorbitol was incorporated as a plasticizer at concentrations of 0%–10%(w/w)to modify film characteristics.Thermal analysis revealed improved stability at moderate sorbitol levels(5%–7%),while excessive plasticizer slightly reduced thermal resistance.Mechanical testing showed that sorbitol increased film flexibility and elongation at break,though tensile strength and stiffness declined.Tear strength followed a non-linear trend,with improvement observed at higher sorbitol concentrations.Seal strength also increased,peaking at 7%,indicating stronger interfacial bonding between film layers.Biodegradation tests demonstrated accelerated decomposition with increased sorbitol content,achieving complete degradation within 30 days at 10% concentration.Color analysis showed increased brightness and reduced yellowing,enhancing the visual quality of the films.These results confirm that direct conversion of bioplastic is both feasible and effective.Sorbitol plays a key role in tuning film properties,offering a low-cost,scalable pathway to biodegradable materials suitable for environmentally friendly packaging applications.