The densities of CO2 inclusions in minerals are commonly used to determine the crystallizing conditions of the host minerals. However, conventional microthermometry is difficult to apply for inclusions of small size ...The densities of CO2 inclusions in minerals are commonly used to determine the crystallizing conditions of the host minerals. However, conventional microthermometry is difficult to apply for inclusions of small size (〈 5-10 μm) or low density. Raman analysis is an alternative method for determining CO2 density, provided that the CO2 density-Raman shift relation is known. This study aims to establish this CO2 density-Raman shift relation by using CO2 inclusions synthesized in fused silica capillaries. By using this newly-developed synthetic technique, we formed pure CO2 inclusions, and their densities were determined by microthermometry. The Raman analysis showed that the relation between CO2 density (D in g/cm^3) and the separations (△ in cm^-1) between the two main bands (i.e. Fermi diad bands) in CO2 Raman spectra can be represented by a cubic equation: D (g/cm^3)=0.74203(-0.019^3+5.90332△^2-610.79472△+21050.30165)-3.54278 (r^2=0.99920). Our calculated D value for a given A is between those obtained from two previously-reported equations, which were derived from different experimental methods. An example was given in this study to demonstrate that the densities of natural CO2 inclusions that could not be derived from microthermometry could be determined by using our method.展开更多
The distributions of lipids in surface and subsurface sediments from the northern South China Sea were determined. The n-alkanes were in bimodal distribution that is characterized by a centre at n-C16 –n-C20 with max...The distributions of lipids in surface and subsurface sediments from the northern South China Sea were determined. The n-alkanes were in bimodal distribution that is characterized by a centre at n-C16 –n-C20 with maximum at C18(or C19) and n-C27 –n-C31 as well as at C29(or C31). The short-chain alkanes suffered from significant losses due to their slow deposition in the water column, and their presence with a slight even carbon predominance in shallow seafloor sediments was ascribed mainly to the direct input from the benthos. The long-chain alkanes with odd predominance indicate transportion of terrigenous organic matter. Immature hopanoid biomarkers reflect the intense microbial activity for bacteria–derived organic matter and the gradual increase of maturity with burial depth. Abundant n-fatty acid methyl esters(n-FAMEs) that are in distributions coincident with fatty acids were detected in all samples. We proposed that the observed FAMEs originated from the methyl esterification of fatty acids; methanol production by methanotrophs and methanogenic archaea related to the anaerobic oxidation of methane, and sulfate reduction provided an O–methyl donor for methylation of fatty acids. The CH4 released from hydrate dissociation at oxygen isotope stage II of Cores ZD3 and ZS5, which had been confirmed by the occurrence of negative δ13C excursion and spherical pyrite aggregates, could have accelerated the above process and thus maximized the relative content of FAMEs at ZD3-2(400–420 cm depth) and ZS5-2(241–291 cm depth).展开更多
基金funded by Basic Outlay of Scientific Research Work from the Ministry of Science and Technology of China *J0723 to Song Yucai)China Postdoctoral Science Foundation(20070420418 to Song Yucai)National Natural Science Foundation of China (40673040 to Hu Wenxuan),and Energy Program of the USGS(to Chou I-Ming)
文摘The densities of CO2 inclusions in minerals are commonly used to determine the crystallizing conditions of the host minerals. However, conventional microthermometry is difficult to apply for inclusions of small size (〈 5-10 μm) or low density. Raman analysis is an alternative method for determining CO2 density, provided that the CO2 density-Raman shift relation is known. This study aims to establish this CO2 density-Raman shift relation by using CO2 inclusions synthesized in fused silica capillaries. By using this newly-developed synthetic technique, we formed pure CO2 inclusions, and their densities were determined by microthermometry. The Raman analysis showed that the relation between CO2 density (D in g/cm^3) and the separations (△ in cm^-1) between the two main bands (i.e. Fermi diad bands) in CO2 Raman spectra can be represented by a cubic equation: D (g/cm^3)=0.74203(-0.019^3+5.90332△^2-610.79472△+21050.30165)-3.54278 (r^2=0.99920). Our calculated D value for a given A is between those obtained from two previously-reported equations, which were derived from different experimental methods. An example was given in this study to demonstrate that the densities of natural CO2 inclusions that could not be derived from microthermometry could be determined by using our method.
基金supported by the National Major Fundamental Research and Development Project of China (No. 2009CB219501)the National Natural Science Foundation of China (No. 40976035 and No. 41276046)
文摘The distributions of lipids in surface and subsurface sediments from the northern South China Sea were determined. The n-alkanes were in bimodal distribution that is characterized by a centre at n-C16 –n-C20 with maximum at C18(or C19) and n-C27 –n-C31 as well as at C29(or C31). The short-chain alkanes suffered from significant losses due to their slow deposition in the water column, and their presence with a slight even carbon predominance in shallow seafloor sediments was ascribed mainly to the direct input from the benthos. The long-chain alkanes with odd predominance indicate transportion of terrigenous organic matter. Immature hopanoid biomarkers reflect the intense microbial activity for bacteria–derived organic matter and the gradual increase of maturity with burial depth. Abundant n-fatty acid methyl esters(n-FAMEs) that are in distributions coincident with fatty acids were detected in all samples. We proposed that the observed FAMEs originated from the methyl esterification of fatty acids; methanol production by methanotrophs and methanogenic archaea related to the anaerobic oxidation of methane, and sulfate reduction provided an O–methyl donor for methylation of fatty acids. The CH4 released from hydrate dissociation at oxygen isotope stage II of Cores ZD3 and ZS5, which had been confirmed by the occurrence of negative δ13C excursion and spherical pyrite aggregates, could have accelerated the above process and thus maximized the relative content of FAMEs at ZD3-2(400–420 cm depth) and ZS5-2(241–291 cm depth).