Automatic Chinese text summarization for dialogue style is a relatively new research area. In this paper, Latent Semantic Analysis (LSA) is first used to extract semantic knowledge from a given document, all questio...Automatic Chinese text summarization for dialogue style is a relatively new research area. In this paper, Latent Semantic Analysis (LSA) is first used to extract semantic knowledge from a given document, all question paragraphs are identified, an automatic text segmentation approach analogous to Text'filing is exploited to improve the precision of correlating question paragraphs and answer paragraphs, and finally some "important" sentences are extracted from the generic content and the question-answer pairs to generate a complete summary. Experimental results showed that our approach is highly efficient and improves significantly the coherence of the summary while not compromising informativeness.展开更多
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z183), National Nat- ural Science Foundation of China (60621001, 60534010, 60572070, 60774048, 60728307), and the Program for Changjiang Scholars and Innovative Research Groups of China (60728307, 4031002)
基金Project (No. 2002AA119050) supported by the National Hi-TechResearch and Development Program (863) of China
文摘Automatic Chinese text summarization for dialogue style is a relatively new research area. In this paper, Latent Semantic Analysis (LSA) is first used to extract semantic knowledge from a given document, all question paragraphs are identified, an automatic text segmentation approach analogous to Text'filing is exploited to improve the precision of correlating question paragraphs and answer paragraphs, and finally some "important" sentences are extracted from the generic content and the question-answer pairs to generate a complete summary. Experimental results showed that our approach is highly efficient and improves significantly the coherence of the summary while not compromising informativeness.