LaNbON2 has narrow bandgap and wide visible-light absorption band, yet no photocatalytic water oxidation on LaNbON2 has been reported. By a post-annealing treatment in Ar, anion vacancies were brought into LaNbON2 as ...LaNbON2 has narrow bandgap and wide visible-light absorption band, yet no photocatalytic water oxidation on LaNbON2 has been reported. By a post-annealing treatment in Ar, anion vacancies were brought into LaNbON2 as shown by EPR spectroscopy. These could act as donors in the semiconductor. And consequently the oxidative power of holes was enhanced as indicated by the difference between fermi level and valence band maximum(EF-EVBM) evaluated from valence band XPS. The annealed LaNbON2 photocatalyst acquired water oxidation ability for the first time, which was improved by combining CoOx as cocatalyst. Annealed LaNbON2 derived from La3NbO7 had smaller particle size, higher concentration of anion vacancies, bigger EF-EVBM and better performance for photocatalytic oxygen evolution reaction than LaNbON2 derived from LaNbO4.展开更多
Introducing topological lattice defects,such as dislocations,into topological photonic crystals enables the emergence of many interesting phenomena,including robust bound states and fractional charges.Previous studies...Introducing topological lattice defects,such as dislocations,into topological photonic crystals enables the emergence of many interesting phenomena,including robust bound states and fractional charges.Previous studies have primarily focused on the realization of dislocation modes within a single band gap,which limits the number of dislocation modes and their applications.展开更多
The physical properties of light fields at the subwavelength scale have emerged as extensively pursued objectives in nano-optics,photonics,and plasmonics.Here,we report that in the paraxial regime,the spectral density...The physical properties of light fields at the subwavelength scale have emerged as extensively pursued objectives in nano-optics,photonics,and plasmonics.Here,we report that in the paraxial regime,the spectral density and the spectral axial coherence(z-coherence)structures in a submicron range can be generated by employing a light beam with a suitably chosen spatial coherence state in a counter-propagating configuration,in an open-end cavity.It is established that while the spectral density forms an optical standing wave,the z-coherence state depends on the symmetry of the selected point pair and in particular,the phenomenon termed as periodical coherence switch is found.Our findings shed new light on the discussion of the role of spatial coherence in the photonic cavities,possibly inspiring further studies in the field of enhanced light-nanomaterials interactions by optical cavity.This provides a versatile framework for tailoring coherence in subwavelength space with promising applications in metrology and imaging.展开更多
基金supported by the National Natural Science Foundation of China (no. 21503220 and 21471147)the Natural Science Foundation of Liaoning Province (no. 201501045)the Thousand Youth Talents Plan of China
文摘LaNbON2 has narrow bandgap and wide visible-light absorption band, yet no photocatalytic water oxidation on LaNbON2 has been reported. By a post-annealing treatment in Ar, anion vacancies were brought into LaNbON2 as shown by EPR spectroscopy. These could act as donors in the semiconductor. And consequently the oxidative power of holes was enhanced as indicated by the difference between fermi level and valence band maximum(EF-EVBM) evaluated from valence band XPS. The annealed LaNbON2 photocatalyst acquired water oxidation ability for the first time, which was improved by combining CoOx as cocatalyst. Annealed LaNbON2 derived from La3NbO7 had smaller particle size, higher concentration of anion vacancies, bigger EF-EVBM and better performance for photocatalytic oxygen evolution reaction than LaNbON2 derived from LaNbO4.
基金National Natural Science Foundation of China(12204552, 12064025, 12374364, 62305146)Basic and Applied Basic Research Foundation of Guangdong Province(2023B1515040023)+3 种基金Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province(20243BCE51163)Natural Science Foundation of Jiangxi Province (20242BAB20023, 20232BAB211031)Nanchang University Youth Training Program (PYQN20230064)Jiangxi Provincial Key Laboratory of Photodetectors(2024SSY03041)
文摘Introducing topological lattice defects,such as dislocations,into topological photonic crystals enables the emergence of many interesting phenomena,including robust bound states and fractional charges.Previous studies have primarily focused on the realization of dislocation modes within a single band gap,which limits the number of dislocation modes and their applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.11874321,and 12174338)the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(Grant No.20204BCJ22012)the UM for Copper Fellowship support。
文摘The physical properties of light fields at the subwavelength scale have emerged as extensively pursued objectives in nano-optics,photonics,and plasmonics.Here,we report that in the paraxial regime,the spectral density and the spectral axial coherence(z-coherence)structures in a submicron range can be generated by employing a light beam with a suitably chosen spatial coherence state in a counter-propagating configuration,in an open-end cavity.It is established that while the spectral density forms an optical standing wave,the z-coherence state depends on the symmetry of the selected point pair and in particular,the phenomenon termed as periodical coherence switch is found.Our findings shed new light on the discussion of the role of spatial coherence in the photonic cavities,possibly inspiring further studies in the field of enhanced light-nanomaterials interactions by optical cavity.This provides a versatile framework for tailoring coherence in subwavelength space with promising applications in metrology and imaging.