The photocatalytic production of hydrogen peroxide(H_(2)O_(2))via the oxygen reduction reaction(ORR)holds great significance in chemical engineering,agriculture,and national defense.However,the underlying influence of...The photocatalytic production of hydrogen peroxide(H_(2)O_(2))via the oxygen reduction reaction(ORR)holds great significance in chemical engineering,agriculture,and national defense.However,the underlying influence of interfacial charge dynamics on catalytic performance remains poorly understood due to limitations in conventional characterization techniques.In this study,we employ thiolate-protected gold-silver metal nanoclusters(MNCs)and nitrogen-doped carbon dot-modified nanoclusters(MNCs/N-CDs)as model systems to investigate ORR selectivity and charge dynamics under light irradiation.This catalyst design leverages the self-oxidation behavior of thiolate ligands and the intrinsic ORR selectivity of nanoclusters to establish a clean and well-defined photocatalytic system.By integrating time-resolved transient photovoltage(TPV)spectroscopy and operando transient potential scanning(TPS)test,we demonstrate that N-CDs promote the separation and storage of photoinduced charge carriers,as well as enhance oxygen adsorption and activation on the catalyst surface,thereby significantly improving H_(2)O_(2)production efficiency.These findings offer new mechanistic insights into the interplay between interfacial charge dynamics and photocatalytic performance,providing guidance for the rational design of advanced ORR catalysts.展开更多
基金supported by National Natural Science Foundation of China(42076193,52271223,52472049,52472230,52471234,52202107,52272043)Natural Science Foundation of Jiangsu Province(BK20220028,BK20230065)+5 种基金National Key R&D Program of China(2024YFA1509300)Ministry of Science and Technology of China(2024YFA1509500)State Key Laboratory of Catalysis(2024SKL-A-014)Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 ProjectSuzhou Key Laboratory of Functional Nano&Soft Materials
文摘The photocatalytic production of hydrogen peroxide(H_(2)O_(2))via the oxygen reduction reaction(ORR)holds great significance in chemical engineering,agriculture,and national defense.However,the underlying influence of interfacial charge dynamics on catalytic performance remains poorly understood due to limitations in conventional characterization techniques.In this study,we employ thiolate-protected gold-silver metal nanoclusters(MNCs)and nitrogen-doped carbon dot-modified nanoclusters(MNCs/N-CDs)as model systems to investigate ORR selectivity and charge dynamics under light irradiation.This catalyst design leverages the self-oxidation behavior of thiolate ligands and the intrinsic ORR selectivity of nanoclusters to establish a clean and well-defined photocatalytic system.By integrating time-resolved transient photovoltage(TPV)spectroscopy and operando transient potential scanning(TPS)test,we demonstrate that N-CDs promote the separation and storage of photoinduced charge carriers,as well as enhance oxygen adsorption and activation on the catalyst surface,thereby significantly improving H_(2)O_(2)production efficiency.These findings offer new mechanistic insights into the interplay between interfacial charge dynamics and photocatalytic performance,providing guidance for the rational design of advanced ORR catalysts.