Receptor-like kinases(RLKs)are important for plant growth,development and defense responses.The S-receptor protein kinases(SRKs),which represent an RLK subfamily,control the selfincompatibility among Brassica species....Receptor-like kinases(RLKs)are important for plant growth,development and defense responses.The S-receptor protein kinases(SRKs),which represent an RLK subfamily,control the selfincompatibility among Brassica species.However,little information is available regarding SRK functions in rice.We identified a gene OsSRK1 encoding an atypical SRK.The transcript of OsSRK1 was induced by abscisic acid(ABA),salt and polyethylene glycol.OsSRK1 localized to the plasma membrane and cytoplasm.Leaf width was increased in OsSRK1-overexpression(OsSRK1-OX)transgenic rice plants,likely because of an increase in cell number per leaf.Furthermore,the expression levels of OsCYCA3-1 and OsCYCD2-1,which encode positive regulators of cell division,were up-regulated in leaf primordium of OsSRK1-OX rice plants relative to those in wild type.Meanwhile,the expression level of OsKRP1,which encodes cell cycle inhibitor,was down-regulated in the OsSRK1-OX plants.Therefore,it is deduced that OsSRK1 regulates leaf width by promoting cell division in the leaf primordium.Additionally,OsSRK1-OX plants exhibited enhanced ABA sensitivity and salt tolerance compared with wild type.These results suggest that OsSRK1 plays important roles in leaf development and salt responses in rice.展开更多
The production efficiency of shale gas is affected by the interaction between hydraulic and natural fractures.This study presents a simulation of natural fractures in shale reservoirs,based on a discrete fracture netw...The production efficiency of shale gas is affected by the interaction between hydraulic and natural fractures.This study presents a simulation of natural fractures in shale reservoirs,based on a discrete fracture network(DFN)method for hydraulic fracturing engineering.Fracture properties of the model are calculated from core fracture data,according to statistical mathematical analysis.The calculation results make full use of the quantitative information of core fracture orientation,density,opening and length,which constitute the direct and extensive data of mining engineering.The reliability and applicability of the model are analyzed with regard to model size and density,a calculation method for dominant size and density being proposed.Then,finite element analysis is applied to a hydraulic fracturing numerical simulation of a shale fractured reservoir in southeastern Chongqing.The hydraulic pressure distribution,fracture propagation,acoustic emission information and in situ stress changes during fracturing are analyzed.The results show the application of fracture statistics in fracture modeling and the influence of fracture distribution on hydraulic fracturing engineering.The present analysis may provide a reference for shale gas exploitation.展开更多
基金This work was supported by grants from Excellent Middle-Aged and Youth Scientist Award Foundation of Shandong Province(Grant No.BS2014SW029)the Shandong Natural Science Foundation(Grant Nos.ZR2016CB17 and ZR2018ZC08N2)Shandong Major Agricultural Applied Technological Innovation Projects(Grant No.2017.04-2020.04)in China.
文摘Receptor-like kinases(RLKs)are important for plant growth,development and defense responses.The S-receptor protein kinases(SRKs),which represent an RLK subfamily,control the selfincompatibility among Brassica species.However,little information is available regarding SRK functions in rice.We identified a gene OsSRK1 encoding an atypical SRK.The transcript of OsSRK1 was induced by abscisic acid(ABA),salt and polyethylene glycol.OsSRK1 localized to the plasma membrane and cytoplasm.Leaf width was increased in OsSRK1-overexpression(OsSRK1-OX)transgenic rice plants,likely because of an increase in cell number per leaf.Furthermore,the expression levels of OsCYCA3-1 and OsCYCD2-1,which encode positive regulators of cell division,were up-regulated in leaf primordium of OsSRK1-OX rice plants relative to those in wild type.Meanwhile,the expression level of OsKRP1,which encodes cell cycle inhibitor,was down-regulated in the OsSRK1-OX plants.Therefore,it is deduced that OsSRK1 regulates leaf width by promoting cell division in the leaf primordium.Additionally,OsSRK1-OX plants exhibited enhanced ABA sensitivity and salt tolerance compared with wild type.These results suggest that OsSRK1 plays important roles in leaf development and salt responses in rice.
基金supported by the National Natural Science Foundation of China(Grant Nos.11872118,11627901)。
文摘The production efficiency of shale gas is affected by the interaction between hydraulic and natural fractures.This study presents a simulation of natural fractures in shale reservoirs,based on a discrete fracture network(DFN)method for hydraulic fracturing engineering.Fracture properties of the model are calculated from core fracture data,according to statistical mathematical analysis.The calculation results make full use of the quantitative information of core fracture orientation,density,opening and length,which constitute the direct and extensive data of mining engineering.The reliability and applicability of the model are analyzed with regard to model size and density,a calculation method for dominant size and density being proposed.Then,finite element analysis is applied to a hydraulic fracturing numerical simulation of a shale fractured reservoir in southeastern Chongqing.The hydraulic pressure distribution,fracture propagation,acoustic emission information and in situ stress changes during fracturing are analyzed.The results show the application of fracture statistics in fracture modeling and the influence of fracture distribution on hydraulic fracturing engineering.The present analysis may provide a reference for shale gas exploitation.