Salidroside(SAL),a major bioactive compound of Rhodiola crenulata,has significant anti-hypoxia effect,however,its underlying molecular mechanism has not been elucidated.In order to explore the protective mechanism of ...Salidroside(SAL),a major bioactive compound of Rhodiola crenulata,has significant anti-hypoxia effect,however,its underlying molecular mechanism has not been elucidated.In order to explore the protective mechanism of SAL,the lactate dehydrogenase(LDH),reactive oxygen species(ROS),superoxide dismutase(SOD)and hypoxia-induced factor 1α(HIF-1α)were measured to establish the PC12 cell hypoxic model.Cell staining and cell viability analyses were performed to evaluate the protective effects of SAL.The metabolomics and bioinformatics methods were used to explore the protective effects of salidroside under hypoxia condition.The metabolite-protein interaction networks were further established and the protein expression level was examined by Western blotting.The results showed that 59 endogenous metabolites changed and the expression of the hub proteins of CK2,p-PTEN/PTEN,PI3K,p-Akt/Akt,NF-κB p65 and Bcl-2 were increased,suggesting that SAL could increase the expression of CK2,which induced the phosphorylation and inactivation of PTEN,reduced the inhibitory effect on PI3K signaling pathways and activated the PI3K/Akt/NF-κB survival signaling pathway.Our study provided an important insight to reveal the protective molecular mechanism of SAL as a novel drug candidate.展开更多
OBJECTIVE The aim of this study is to investigate the inhibitory effects of lapachol on rat C6 glioma both in vitro and in vivo,as well as the potential mechanisms.METHODS First,the model of C6 glioma in Wistar rats w...OBJECTIVE The aim of this study is to investigate the inhibitory effects of lapachol on rat C6 glioma both in vitro and in vivo,as well as the potential mechanisms.METHODS First,the model of C6 glioma in Wistar rats was established and verified by hemotoxylin and eosin staining,immunohistochemical staining and magnetic resonance imaging(MRI).Then different doses of lapachol were gavaged and tumor volumes of the C6 glioma were detected by MRI.The effects of lapachol on C6 cell proliferation,apoptosis and DNA damage were detected by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium(MTS)/phen-azinemethosulfate(PMS)assay,Hoechst33358 staining,AnnexinⅤ-FITC/PI staining,and comet assay.Effects of lapachol on topoisomeraseⅠ(TOPⅠ)and topoisomeraseⅡ(TOPⅡ)activities were detected by TOPⅠand TOPⅡmediated supercoiled p BR322 DNA relaxation assay.Molecular docking was used to predict the interaction of lapachol-TOPⅠand lapachol-TOPⅡ.TOP I and TOPⅡexpression levels in C6 cells were determined by Enzymelinked immunosorbent assay kits and real-time polymerase chain reaction(RT-PCR).RESULTS The rat C6 glioma model was successfully established.High dose lapachol showed significant inhibitory effect on the C6 glioma in Wistar rats(P<0.05).MTS/PMS assay,Hoechst 33258 staining,AnnexinⅤ-FITC/PI staining,and comet assay showed that lapachol could inhibit proliferation,induce apoptosis and DNA damage of C6 cells in dose dependent manners.Lapachol could inhibit the activities of both TOPⅠandⅡ.Molecular docking showed that lapachol-TOPⅠshowed relatively stronger interaction than that of lapachol-TOPⅡ.Enzyme-linked immunosorbent assay and RT-PCR showed that lapachol could inhibit TOPⅡexpression levels,but not TOPⅠexpression levels.CONCLUSION These results showed that lapachol could significantly inhibit C6 glioma both in vivo and in vitro,which might be related with inhibiting TOPⅠand TOPⅡactivities,as wel as TOPⅡexpression.展开更多
OBJECTIVE Hypoxia is associated with many complicated pathophysiological and biochemical processes that integrated and regulated via the key gene,protein and endogenous metabolite levels.Up to date,the exact molecular...OBJECTIVE Hypoxia is associated with many complicated pathophysiological and biochemical processes that integrated and regulated via the key gene,protein and endogenous metabolite levels.Up to date,the exact molecular mechanism of hypoxia still remains unclear.In this work,we further explore the molecular mechanism of hypoxia and adaption to attenuate the damage in zebrafish model that have potential to resist hypoxic environment.METHODS The hypoxic zebrafish model was established in different concentration of oxygen with 3%,5%,10%,21%in water.The brain tissue was separated and the RNA-seq was used to identify the differentially expressed genes.The related endogenous metabolites profiles were obtained by LC-HDMS,and the multivariate statistics was applied to discover the important metabolites candidates in hypoxic zebrafish.The candidates were searched in HMDB,KEGG and Lipid Maps databases.RESULTS The zebrafish hypoxic model was successfully constructed via the different concentration of oxygen,temperature and hypoxic time.The activities of the related hypoxic metabolic enzymes and factors including HIF-1a,actate dehydrogenase(LDH)and citrate synthase(CS)were evaluated.Significant differences(P<0.05 and fold change>2)in the expression of 422 genes were observed between the normal and 3% hypoxic model.Among them,201 genes increased depended on the lower concentration of oxygen.53 metabolites were identified that had significant difference between the hypoxia and control groups(P<0.05,fold change>1.5 and VIP>1.5).The ten key metabolites were increased gradually while six compounds were decreased.The endogenous hypoxic metabolites of phenylalanine,D-glucosamine-6P and several important lipids with the relevant hub genes had similar change in hypoxic model.In addition,the metabolic pathways of phenylalanine,glutamine and glycolipid were influenced in both the levels of genes and metabolites.CONCLUSION The up-regulation of phenylalanine,D-glucosamine-6P and lipid may have further understanding of protective effect in hypoxia.Our data provided an insight to further reveal the hypoxia and adaptation mechanism.展开更多
The acoustic nonlinearity parameter B/A of a liquid containing microbubbles,sonicated dextrose albumin,has been measured by using second harmonic insert-substitution method.Results show that the value of nonlinearity ...The acoustic nonlinearity parameter B/A of a liquid containing microbubbles,sonicated dextrose albumin,has been measured by using second harmonic insert-substitution method.Results show that the value of nonlinearity parameter B/A for a bubbly liquid is significant and it obviously increases with increase of bubble number density.The high nonlinearity of the bubbly liquid is mainly dependent on the microbubble nonlinear oscillation.展开更多
分子量是聚合物的重要特性之一,木质素的分子量及其分布是研究苯丙烷类结构的反应、物理化学特性和评价其改性产物质量的内容之一。本研究以陆地棉TM-1成熟纤维为材料,分别利用酶解-温和酸解木质素法和二氧六环法提取棉纤维中木质素,结...分子量是聚合物的重要特性之一,木质素的分子量及其分布是研究苯丙烷类结构的反应、物理化学特性和评价其改性产物质量的内容之一。本研究以陆地棉TM-1成熟纤维为材料,分别利用酶解-温和酸解木质素法和二氧六环法提取棉纤维中木质素,结合凝胶渗透色谱法(gel permeation chromatography,GPC)调查和评价2种方法获得的棉纤维中木质素的相对分子量。结果表明,经二氧六环处理提取的棉花纤维中的木质素(dioxane lignin,DL)的重均分子量为2924g mol^(–1)、数均分子量2403 g mol^(–1),略高于由酶解-温和酸解处理提取的木质素(enzymatic hydrolysis-mild acidolysis lignin,EMAL)的重均分子量(2169 g mol^(–1))和数均分子量(1970 g mol^(–1)),EMAL的多分散系数稍低,说明木质素的均一性比DL高。表明EMAL法提取的木质素更适用于分析棉纤维中木质素的相对分子量。利用EMAL法分析棉纤维中木质素相对分子量表明,不同棉花品种的木质素重均分子量分布范围为938~2169 g mol^(–1),数均分子量分布范围为857~1970 g mol^(–1),多分散性系数在1.09~1.74间,均小于2。重均分子量与纤维马克隆值呈显著负相关,数均分子量与纤维长度呈显著负相关,与纤维马克隆值呈极显著负相关。展开更多
对竹叶中的黄酮类化合物进行提取、纯化及抗氧化性能研究。考察了大孔树脂对竹叶黄酮的吸附、解吸工艺参数,当黄酮上样量流速为1.0 m L/min,pH为5.0时,黄酮吸附率最高为80.13%。当洗脱剂乙醇流速为1.5 m L/min,乙醇浓度为60%时,黄酮解...对竹叶中的黄酮类化合物进行提取、纯化及抗氧化性能研究。考察了大孔树脂对竹叶黄酮的吸附、解吸工艺参数,当黄酮上样量流速为1.0 m L/min,pH为5.0时,黄酮吸附率最高为80.13%。当洗脱剂乙醇流速为1.5 m L/min,乙醇浓度为60%时,黄酮解吸率最佳为90.6%。竹叶黄酮在光照、强酸、强碱条件下,自由基清除率下降明显。展开更多
基金supported by the National Natural Science Foundation of China(Nos.81573683,81173121,81773803).
文摘Salidroside(SAL),a major bioactive compound of Rhodiola crenulata,has significant anti-hypoxia effect,however,its underlying molecular mechanism has not been elucidated.In order to explore the protective mechanism of SAL,the lactate dehydrogenase(LDH),reactive oxygen species(ROS),superoxide dismutase(SOD)and hypoxia-induced factor 1α(HIF-1α)were measured to establish the PC12 cell hypoxic model.Cell staining and cell viability analyses were performed to evaluate the protective effects of SAL.The metabolomics and bioinformatics methods were used to explore the protective effects of salidroside under hypoxia condition.The metabolite-protein interaction networks were further established and the protein expression level was examined by Western blotting.The results showed that 59 endogenous metabolites changed and the expression of the hub proteins of CK2,p-PTEN/PTEN,PI3K,p-Akt/Akt,NF-κB p65 and Bcl-2 were increased,suggesting that SAL could increase the expression of CK2,which induced the phosphorylation and inactivation of PTEN,reduced the inhibitory effect on PI3K signaling pathways and activated the PI3K/Akt/NF-κB survival signaling pathway.Our study provided an important insight to reveal the protective molecular mechanism of SAL as a novel drug candidate.
文摘OBJECTIVE The aim of this study is to investigate the inhibitory effects of lapachol on rat C6 glioma both in vitro and in vivo,as well as the potential mechanisms.METHODS First,the model of C6 glioma in Wistar rats was established and verified by hemotoxylin and eosin staining,immunohistochemical staining and magnetic resonance imaging(MRI).Then different doses of lapachol were gavaged and tumor volumes of the C6 glioma were detected by MRI.The effects of lapachol on C6 cell proliferation,apoptosis and DNA damage were detected by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium(MTS)/phen-azinemethosulfate(PMS)assay,Hoechst33358 staining,AnnexinⅤ-FITC/PI staining,and comet assay.Effects of lapachol on topoisomeraseⅠ(TOPⅠ)and topoisomeraseⅡ(TOPⅡ)activities were detected by TOPⅠand TOPⅡmediated supercoiled p BR322 DNA relaxation assay.Molecular docking was used to predict the interaction of lapachol-TOPⅠand lapachol-TOPⅡ.TOP I and TOPⅡexpression levels in C6 cells were determined by Enzymelinked immunosorbent assay kits and real-time polymerase chain reaction(RT-PCR).RESULTS The rat C6 glioma model was successfully established.High dose lapachol showed significant inhibitory effect on the C6 glioma in Wistar rats(P<0.05).MTS/PMS assay,Hoechst 33258 staining,AnnexinⅤ-FITC/PI staining,and comet assay showed that lapachol could inhibit proliferation,induce apoptosis and DNA damage of C6 cells in dose dependent manners.Lapachol could inhibit the activities of both TOPⅠandⅡ.Molecular docking showed that lapachol-TOPⅠshowed relatively stronger interaction than that of lapachol-TOPⅡ.Enzyme-linked immunosorbent assay and RT-PCR showed that lapachol could inhibit TOPⅡexpression levels,but not TOPⅠexpression levels.CONCLUSION These results showed that lapachol could significantly inhibit C6 glioma both in vivo and in vitro,which might be related with inhibiting TOPⅠand TOPⅡactivities,as wel as TOPⅡexpression.
基金supported by National Natural Science Foundation of China(81573683 and 81173121)
文摘OBJECTIVE Hypoxia is associated with many complicated pathophysiological and biochemical processes that integrated and regulated via the key gene,protein and endogenous metabolite levels.Up to date,the exact molecular mechanism of hypoxia still remains unclear.In this work,we further explore the molecular mechanism of hypoxia and adaption to attenuate the damage in zebrafish model that have potential to resist hypoxic environment.METHODS The hypoxic zebrafish model was established in different concentration of oxygen with 3%,5%,10%,21%in water.The brain tissue was separated and the RNA-seq was used to identify the differentially expressed genes.The related endogenous metabolites profiles were obtained by LC-HDMS,and the multivariate statistics was applied to discover the important metabolites candidates in hypoxic zebrafish.The candidates were searched in HMDB,KEGG and Lipid Maps databases.RESULTS The zebrafish hypoxic model was successfully constructed via the different concentration of oxygen,temperature and hypoxic time.The activities of the related hypoxic metabolic enzymes and factors including HIF-1a,actate dehydrogenase(LDH)and citrate synthase(CS)were evaluated.Significant differences(P<0.05 and fold change>2)in the expression of 422 genes were observed between the normal and 3% hypoxic model.Among them,201 genes increased depended on the lower concentration of oxygen.53 metabolites were identified that had significant difference between the hypoxia and control groups(P<0.05,fold change>1.5 and VIP>1.5).The ten key metabolites were increased gradually while six compounds were decreased.The endogenous hypoxic metabolites of phenylalanine,D-glucosamine-6P and several important lipids with the relevant hub genes had similar change in hypoxic model.In addition,the metabolic pathways of phenylalanine,glutamine and glycolipid were influenced in both the levels of genes and metabolites.CONCLUSION The up-regulation of phenylalanine,D-glucosamine-6P and lipid may have further understanding of protective effect in hypoxia.Our data provided an insight to further reveal the hypoxia and adaptation mechanism.
基金Supported by the National Natural Science Foundation of China under Grant No.19834040.
文摘The acoustic nonlinearity parameter B/A of a liquid containing microbubbles,sonicated dextrose albumin,has been measured by using second harmonic insert-substitution method.Results show that the value of nonlinearity parameter B/A for a bubbly liquid is significant and it obviously increases with increase of bubble number density.The high nonlinearity of the bubbly liquid is mainly dependent on the microbubble nonlinear oscillation.
文摘分子量是聚合物的重要特性之一,木质素的分子量及其分布是研究苯丙烷类结构的反应、物理化学特性和评价其改性产物质量的内容之一。本研究以陆地棉TM-1成熟纤维为材料,分别利用酶解-温和酸解木质素法和二氧六环法提取棉纤维中木质素,结合凝胶渗透色谱法(gel permeation chromatography,GPC)调查和评价2种方法获得的棉纤维中木质素的相对分子量。结果表明,经二氧六环处理提取的棉花纤维中的木质素(dioxane lignin,DL)的重均分子量为2924g mol^(–1)、数均分子量2403 g mol^(–1),略高于由酶解-温和酸解处理提取的木质素(enzymatic hydrolysis-mild acidolysis lignin,EMAL)的重均分子量(2169 g mol^(–1))和数均分子量(1970 g mol^(–1)),EMAL的多分散系数稍低,说明木质素的均一性比DL高。表明EMAL法提取的木质素更适用于分析棉纤维中木质素的相对分子量。利用EMAL法分析棉纤维中木质素相对分子量表明,不同棉花品种的木质素重均分子量分布范围为938~2169 g mol^(–1),数均分子量分布范围为857~1970 g mol^(–1),多分散性系数在1.09~1.74间,均小于2。重均分子量与纤维马克隆值呈显著负相关,数均分子量与纤维长度呈显著负相关,与纤维马克隆值呈极显著负相关。
文摘对竹叶中的黄酮类化合物进行提取、纯化及抗氧化性能研究。考察了大孔树脂对竹叶黄酮的吸附、解吸工艺参数,当黄酮上样量流速为1.0 m L/min,pH为5.0时,黄酮吸附率最高为80.13%。当洗脱剂乙醇流速为1.5 m L/min,乙醇浓度为60%时,黄酮解吸率最佳为90.6%。竹叶黄酮在光照、强酸、强碱条件下,自由基清除率下降明显。