Inhomogeneous Calderon-Zygmund operator T maps each atom into an approximate molecule of weighted local Hardy space if and only if some approximate cancellation condition holds for T.An equivalent norm for weighted Le...Inhomogeneous Calderon-Zygmund operator T maps each atom into an approximate molecule of weighted local Hardy space if and only if some approximate cancellation condition holds for T.An equivalent norm for weighted Lebesgue space which has vanishing moments up to order s plays an important role,where s∈N.展开更多
We propose the Dantzig selector based on the l_(1-q)(1<q≤2)minimization model for the sparse signal recovery.First,we discuss some properties of l_(1-q)minimization model and give some useful inequalities.Then,we ...We propose the Dantzig selector based on the l_(1-q)(1<q≤2)minimization model for the sparse signal recovery.First,we discuss some properties of l_(1-q)minimization model and give some useful inequalities.Then,we give a sufficient condition based on the restricted isometry property for the stable recovery of signals.The l_(1-2)minimization model of Yin-Lou-He is extended to the l_(1-q)minimization model.展开更多
Let A :=(A_1, A_2) be a pair of expansive dilations and φ : R^n×R^m×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz ...Let A :=(A_1, A_2) be a pair of expansive dilations and φ : R^n×R^m×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space H~φ_A(R^n× R^m) via the anisotropic Lusin-area function and establish its atomic characterization, the g-function characterization, the g_λ~*-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of H~φ_A(R^n× R^m) is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet(φ, q, s), if T is a sublinear operator and maps all(φ, q, s)-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from H~φ_A(R^n× R^m) to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from H~φ_A(R^n× R^m) to L~φ(R^n× R^m)and from H~φ_A(R^n×R^m) to itself, whose kernels are adapted to the action of A. The results of this article essentially extend the existing results for weighted product Hardy spaces on R^n× R^m and are new even for classical product Orlicz-Hardy spaces.展开更多
文摘Inhomogeneous Calderon-Zygmund operator T maps each atom into an approximate molecule of weighted local Hardy space if and only if some approximate cancellation condition holds for T.An equivalent norm for weighted Lebesgue space which has vanishing moments up to order s plays an important role,where s∈N.
基金supported by the National Natural Science Foundation of China“Variable exponential function spaces on variable anisotropic Euclidean spaces and their applications”(12261083),“Harmonic analysis on affine symmetric spaces”(12161083).
文摘We propose the Dantzig selector based on the l_(1-q)(1<q≤2)minimization model for the sparse signal recovery.First,we discuss some properties of l_(1-q)minimization model and give some useful inequalities.Then,we give a sufficient condition based on the restricted isometry property for the stable recovery of signals.The l_(1-2)minimization model of Yin-Lou-He is extended to the l_(1-q)minimization model.
基金supported by National Natural Science Foundation of China (Grant Nos. 11671414, 11271091, 11471040, 11461065, 11661075, 11571039 and 11671185)
文摘Let A :=(A_1, A_2) be a pair of expansive dilations and φ : R^n×R^m×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space H~φ_A(R^n× R^m) via the anisotropic Lusin-area function and establish its atomic characterization, the g-function characterization, the g_λ~*-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of H~φ_A(R^n× R^m) is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet(φ, q, s), if T is a sublinear operator and maps all(φ, q, s)-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from H~φ_A(R^n× R^m) to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from H~φ_A(R^n× R^m) to L~φ(R^n× R^m)and from H~φ_A(R^n×R^m) to itself, whose kernels are adapted to the action of A. The results of this article essentially extend the existing results for weighted product Hardy spaces on R^n× R^m and are new even for classical product Orlicz-Hardy spaces.