The mixed nanostructure mainly consisting of nanotwins and nanograins was obtained in a solid solution CuCrZr alloy by means of dynamic plastic deformation at cryogenic temperature.After subsequent aging treatments,th...The mixed nanostructure mainly consisting of nanotwins and nanograins was obtained in a solid solution CuCrZr alloy by means of dynamic plastic deformation at cryogenic temperature.After subsequent aging treatments,the precipitation of Cr at nanometer scale provided further strengthening and brought substantial recovery of electrical conductivity.The aged nanostructured CuCrZr alloy exhibited a high tensile strength of 832MPa and a high electrical conductivity of 71.2%IACS.The details of precipitation tuned by nanotwin boundaries were demonstrated in this work.The combined strengthening of nanostructures and nanoprecipitates was discussed.展开更多
Lamellar nanostructures were induced in a plain martensitic low-carbon steel by using dynamic plastic deformation at room temperature.The nanostructured steel was hardened after annealing at 673 K for20 min,with a ten...Lamellar nanostructures were induced in a plain martensitic low-carbon steel by using dynamic plastic deformation at room temperature.The nanostructured steel was hardened after annealing at 673 K for20 min,with a tensile strength increased from 1.2 GPa to 1.6 GPa.Both the remained nanostructures and annealing-induced precipitates in nano-scale play key roles in the hardening.展开更多
基金supported by the Ministry of Science&Technology of China(No.2017YFA0204401)the Chinese Academy of Sciences(No.zdyz201701)+3 种基金the Liaoning Revitalization Talents Program(No.XLYC1808008)the National Natural Science Foundation of China(Nos.51501192 and 51771196)the Fundamental Research Funds for the Central Universities(No.3072019CF1017)the Key Research Program of Frontier Science,Chinese Academy of Sciences.
文摘The mixed nanostructure mainly consisting of nanotwins and nanograins was obtained in a solid solution CuCrZr alloy by means of dynamic plastic deformation at cryogenic temperature.After subsequent aging treatments,the precipitation of Cr at nanometer scale provided further strengthening and brought substantial recovery of electrical conductivity.The aged nanostructured CuCrZr alloy exhibited a high tensile strength of 832MPa and a high electrical conductivity of 71.2%IACS.The details of precipitation tuned by nanotwin boundaries were demonstrated in this work.The combined strengthening of nanostructures and nanoprecipitates was discussed.
基金Financial supports from the National Basic Research Program of China(Grant No.2012CB932201)the National Natural Science Foundation of China(Grant No.51371172)+1 种基金Bosch (China) Investment Ltd.,the MOST of China(2010DFB54010)the CAS International Cooperation Project(GJHZ1033)
文摘Lamellar nanostructures were induced in a plain martensitic low-carbon steel by using dynamic plastic deformation at room temperature.The nanostructured steel was hardened after annealing at 673 K for20 min,with a tensile strength increased from 1.2 GPa to 1.6 GPa.Both the remained nanostructures and annealing-induced precipitates in nano-scale play key roles in the hardening.