Nephritic, hepatic and immune failures would lead to the overload of endogenous toxic molecules(e.g. bilirubin, cholic acid, uric acid, creatinine etc.) in human bodies. It is fatal in most cases and extracorporeal bl...Nephritic, hepatic and immune failures would lead to the overload of endogenous toxic molecules(e.g. bilirubin, cholic acid, uric acid, creatinine etc.) in human bodies. It is fatal in most cases and extracorporeal blood purification(ECBP) is powerful first-aid therapy. Adsorbents are key parts of ECBP apparatus. Mesoporous silicas should be promising candidates for these medical adsorbents, but there is no report about this. Herein, pure and amine-grafted mesoporous silicas have been applied to adsorb bilirubin, cholic acid, uric acid, creatinine and phenobarbital for the first time. These mesoporous materials show high adsorption capacities for bilirubin and uric acid in phosphate buffer solution(PBS). Effects of pore sizes, amine-modification, temperature and ionic strength on their bilirubin adsorption capacities have been studied in detail.展开更多
Hollow mesoporous silica spheres with magnetite cores(HMSMC) have been fabricated by Vacuum Nano-casting Route. The amount of magnetite cores and saturation magnetization value can be easily adjusted by changing the c...Hollow mesoporous silica spheres with magnetite cores(HMSMC) have been fabricated by Vacuum Nano-casting Route. The amount of magnetite cores and saturation magnetization value can be easily adjusted by changing the concentration of iron nitrate solution used in the synthesis procedure. Furthermore, the as-prepared HMSMCs still maintain narrow mesopore distribution, high surface area and large pore volume after the hollow cores of hollow mesoporous silica spheres were filled with magnetite particles. Specially, when the saturation magnetization value of as-prepared HMSMCs reaches 22.0 emu/g, the surface area and pore volume of corresponding HMSMCs are 149 m^2/g and 0.19 cm^3/g, respectively, and the pore size is 2.30 nm. The corresponding samples are characterized by X-ray diffraction, N_2 sorption isotherms, transmission electron microscopy and vibrating-sample magnetometer.展开更多
基金financial supports from the National Science Foundation of China(Grant No.50702072)the Shanghai"Phosphor"Science Foundation,China(Grant No.08QA14074)
文摘Nephritic, hepatic and immune failures would lead to the overload of endogenous toxic molecules(e.g. bilirubin, cholic acid, uric acid, creatinine etc.) in human bodies. It is fatal in most cases and extracorporeal blood purification(ECBP) is powerful first-aid therapy. Adsorbents are key parts of ECBP apparatus. Mesoporous silicas should be promising candidates for these medical adsorbents, but there is no report about this. Herein, pure and amine-grafted mesoporous silicas have been applied to adsorb bilirubin, cholic acid, uric acid, creatinine and phenobarbital for the first time. These mesoporous materials show high adsorption capacities for bilirubin and uric acid in phosphate buffer solution(PBS). Effects of pore sizes, amine-modification, temperature and ionic strength on their bilirubin adsorption capacities have been studied in detail.
基金support of this research by the National Science Foundation of China(Grant No.50702072)Chinese Academy of Science(Grant No.KJCX2.YW.M02)+1 种基金National 863 Projects(Grant No.2007AA03Z317)Shanghai Nano-Science Program(Grant No.0852nm03900)
文摘Hollow mesoporous silica spheres with magnetite cores(HMSMC) have been fabricated by Vacuum Nano-casting Route. The amount of magnetite cores and saturation magnetization value can be easily adjusted by changing the concentration of iron nitrate solution used in the synthesis procedure. Furthermore, the as-prepared HMSMCs still maintain narrow mesopore distribution, high surface area and large pore volume after the hollow cores of hollow mesoporous silica spheres were filled with magnetite particles. Specially, when the saturation magnetization value of as-prepared HMSMCs reaches 22.0 emu/g, the surface area and pore volume of corresponding HMSMCs are 149 m^2/g and 0.19 cm^3/g, respectively, and the pore size is 2.30 nm. The corresponding samples are characterized by X-ray diffraction, N_2 sorption isotherms, transmission electron microscopy and vibrating-sample magnetometer.