The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of...The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.展开更多
Extensive site investigations were conducted prior to the construction of a Mass Rapid Transit project in Singapore that was predominantly in the Bukit Timah Granite(BTG)formation residual soil.This paper evaluates th...Extensive site investigations were conducted prior to the construction of a Mass Rapid Transit project in Singapore that was predominantly in the Bukit Timah Granite(BTG)formation residual soil.This paper evaluates the engineering properties of the BTG formation residual soil based on data from 208 site investigation boreholes from four different sites.Based on the results from 2481 conventional laboratory tests and 1192 in-situ tests,this paper summarizes the engineering properties of the highly variable BTG residual soil,including conventional composition analysis,index and hydraulic properties,and strength and deformation parameters required for geotechnical analysis and design.Based on these results,the BTG formation is found to be quite heterogeneous.As the degree of weathering decreases with depth from the top of the formation,the BTG residual soil becomes sandier,with reduced silt and clay fractions.The coefficient of permeability and the compression index of the BTG residual soil vary significantly.In addition,the empirical equations relating the shear strength(index)to the standard penetration test(SPT)-N,as well as the equations and charts for determining stiffness,are proposed.These findings,together with the proposed equations or charts,can be used for design guidance of similar projects related to granitic residual soils in Singapore.展开更多
基金supported by the National Key R&D Program of China under Contract No.2022YFA1602200the International Partnership Program of the Chineses Academy of Sciences under Grant No.211134KYSB20200057the STCF Key Technology Research and Development Project.
文摘The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.
基金the support from the National Natural Science Foundation of China(No.51608071)General Financial Grant of the China Postdoctoral Science Foundation(2017M620414)+2 种基金Special Funding for Post-doctoral Researchers in Chongqing(Xm2017007)the Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering,Ministry of Education(RMHSE1601)the Advanced Interdisciplinary Special Cultivation program(No.106112017CDJQJ208850).
文摘Extensive site investigations were conducted prior to the construction of a Mass Rapid Transit project in Singapore that was predominantly in the Bukit Timah Granite(BTG)formation residual soil.This paper evaluates the engineering properties of the BTG formation residual soil based on data from 208 site investigation boreholes from four different sites.Based on the results from 2481 conventional laboratory tests and 1192 in-situ tests,this paper summarizes the engineering properties of the highly variable BTG residual soil,including conventional composition analysis,index and hydraulic properties,and strength and deformation parameters required for geotechnical analysis and design.Based on these results,the BTG formation is found to be quite heterogeneous.As the degree of weathering decreases with depth from the top of the formation,the BTG residual soil becomes sandier,with reduced silt and clay fractions.The coefficient of permeability and the compression index of the BTG residual soil vary significantly.In addition,the empirical equations relating the shear strength(index)to the standard penetration test(SPT)-N,as well as the equations and charts for determining stiffness,are proposed.These findings,together with the proposed equations or charts,can be used for design guidance of similar projects related to granitic residual soils in Singapore.