期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Micro-sized and Nano-sized Fe_3O_4 Particles as Anode Materials for Lithium-ion Batteries 被引量:8
1
作者 Y.X.Chen l.h.he +4 位作者 P.J.Shang Q.L.Tang Z.Q.Liu H.B.Liu L.P.Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第1期41-45,共5页
Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The m... Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The morphology and microstructure of the micro-sized and the nano-sized Fe3O4 particles were characterized by X-ray diffraction,field-emission gun scanning electron microscopy,transmission electron microscopy and highresolution electron microscopy.The micro-sized Fe3O4 particles exhibit porous structure,while the nano-sized Fe3O4 particles are solid structure.Their electrochemical performance was also evaluated.The nano-sized solid Fe3O4 particles exhibit gradual capacity fading with initial discharge capacity of 1083.1 mAhg-1 and reversible capacity retention of 32.6% over 50 cycles.Interestingly,the micro-sized porous Fe3O4 particles display very stable capacity-cycling behavior,with initial discharge capacity of 887.5 mAhg-1 and charge capacity of 684.4 mAhg-1 at the 50th cycle.Therefore,77.1% of the reversible capacity can be maintained over 50 cycles.The micro-sized porous Fe3O4 particles with facile synthesis,good cycling performance and high capacity retention are promising candidate as anode materials for high energy-density lithium-ion batteries. 展开更多
关键词 Lithium-ion battery FE3O4 Porous structure Anode materials
原文传递
On the hydrogen embrittlement mechanism of 2 GPa-grade press-hardened steel at various strain rates:Experiments and modeling
2
作者 Z.H.Cao Y.Ngiam +2 位作者 C.P.Huang l.h.he M.X.Huang 《Journal of Materials Science & Technology》 2025年第21期142-158,共17页
Hydrogen embrittlement(HE)in 2 GPa-grade press-hardened steel(PHS)has posed a great risk to its lightweighting application in automotive crash-resistant components.While conventional slow strain rate tensile tests sho... Hydrogen embrittlement(HE)in 2 GPa-grade press-hardened steel(PHS)has posed a great risk to its lightweighting application in automotive crash-resistant components.While conventional slow strain rate tensile tests show that the precharged hydrogen concentration of 3.5 wppm induces a severe loss in strength and ductility,the high strain rate tests conducted at 1–103 s−1 that simulate the crash condition demonstrate no loss in strength and a minimal loss in ductility.Such strain rate dependency cannot be exclusively explained via hydrogen diffusion and redistribution to susceptible prior austenite grain boundaries,as the tensile testing of precharged samples with jumping strain rates offers a sufficient redistribution period at slow-strain-rate loading,but does not necessarily lead to a high level of HE afterwards.Detailed fractography analysis acknowledges that hydrogen-induced microcracks nucleated within early deformation stages are directly responsible for the high HE susceptibility of all test conditions.A phase-field simulation comprising 2 GPa-grade PHS's microstructure features and the hydrogen diffusion under tested loading conditions is applied.The calculation reveals that the hydrogen redistribution behavior is spatially confined to the crack tip areas but to a much greater extent.It thus facilitates continuous crack growth following the main crack with minimal plastic deformation and avoids branching to form secondary cracks.The combined experiments and modeling highlight the vital role of microcracks in the HE performance of 2 GPa-grade PHS,upon which the safety factor of HE in high-strength martensitic steels shall be established. 展开更多
关键词 Press-hardened steel Hydrogen embrittlement Hydrogen redistribution High strain rate Phase-field simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部