期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Laser-initiated p-^(11)B fusion reactions in petawatt high-repetition-rate laser facilities
1
作者 M.Scisciò G.Petringa +43 位作者 Z.Zhu M.R.D.Rodrigues M.Alonzo P.L.Andreoli F.Filippi Fe.Consoli M.Huault D.Raffestin D.Molloy H.Larreur D.Singappuli T.Carriere C.Verona P.Nicolai A.McNamee M.Ehret E.Filippov R.Lera J.A.Pérez-Hernández S.Agarwal M.Krupka S.Singh V.Istokskaia D.Lattuada M.La Cognata G.L.Guardo S.Palmerini G.Rapisarda K.Batani M.Cipriani G.Cristofari E.Di Ferdinando G.Di Giorgio R.De Angelis D.Giulietti J.Xu L.Volpe M.D.Rodríguez-Frías l.giuffrida D.Margarone D.Batani G.A.P.Cirrone A.Bonasera Fa.Consoli 《Matter and Radiation at Extremes》 2025年第3期58-74,共17页
Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential a... Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential applications:as an alternative to deuterium-tritium for fusion energy production,astrophysics studies,and alpha-particle generation for medical treatment.One possible scheme for laser-driven p-^(11)B reactions is to direct a beam of laser-accelerated protons onto a boron(B)sample(the so-called“pitcher-catcher”scheme).This technique has been successfully implemented on large high-energy lasers,yielding hundreds of joules per shot at low repetition.We present here a complementary approach,exploiting the high repetition rate of the VEGA III petawatt laser at CLPU(Spain),aiming at accumulating results from many interactions at much lower energy,to provide better control of the parameters and the statistics of the measurements.Despite a moderate energy per pulse,our experiment allowed exploration of the laser-driven fusion process with tens(up to hundreds)of laser shots.The experiment provided a clear signature of the reactions involved and of the fusion products,accumulated over many shots,leading to an improved optimization of the diagnostics for experimental campaigns of this type.In this paper,we discuss the effectiveness of laser-driven p-11B fusion in the pitcher-catcher scheme,at a high repetition rate,addressing the challenges of this experimental scheme and highlighting its critical aspects.Our proposed methodology allows evaluation of the performance of this scheme for laser-driven alpha particle production and can be adapted to high-repetition-rate laser facilities with higher energy and intensity. 展开更多
关键词 petawatt laser p b reactions nuclear fusion reaction pitcher catcher scheme fusion energy alpha particle production high repetition rate laser driven fusion
在线阅读 下载PDF
Radioisotope production using lasers:From basic science to applications 被引量:1
2
作者 M.R.D.Rodrigues A.Bonasera +37 位作者 M.Scisciò J.A.Pérez-Hernández M.Ehret F.Filippi P.L.Andreoli M.Huault H.Larreur D.Singappuli D.Molloy D.Raffestin M.Alonzo G.G.Rapisarda D.Lattuada G.L.Guardo C.Verona Fe.Consoli G.Petringa A.McNamee M.La Cognata S.Palmerini T.Carriere M.Cipriani G.Di Giorgio G.Cristofari R.De Angelis G.A.P.Cirrone D.Margarone l.giuffrida D.Batani P.Nicolai K.Batani R.Lera L.Volpe D.Giulietti S.Agarwal M.Krupka S.Singh Fa.Consoli 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第3期31-44,共14页
The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometer... The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers.Protons with energies of tens of MeV can be accelerated using,for instance,target normal sheath acceleration and focused on secondary targets.Under such conditions,nuclear reactions can occur,with the production of radioisotopes suitable for medical application.The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators.In this paper,we study the production of^(67)Cu,^(63)Zn,^(18)F,and^(11)C,which are currently used in positron emission tomography and other applications.At the same time,we study the reactions^(10)B(p,α)^(7)Be and^(70)Zn(p,4n)^(67)Ga to put further constraints on the proton distributions at different angles,as well as the reaction^(11)B(p,α)^(8)Be relevant for energy production.The experiment was performed at the 1 PW laser facility at VegaⅢin Salamanca,Spain.Angular distributions of radioisotopes in the forward(with respect to the laser direction)and backward directions were measured using a high purity germanium detector.Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera[Nucl.Instrum.Methods Phys.Res.,Sect.A 637,164–170(2011)]. 展开更多
关键词 PURITY ESTIMATES BACKWARD
在线阅读 下载PDF
Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor 被引量:2
3
作者 H.Hora G.Korn +10 位作者 S.Eliezer N.Nissim P.Lalousis l.giuffrida D.Margarone A.Picciotto G.H.Miley S.Moustaizis J.-M.Martinez-Val C.P.J.Barty G.J.Kirchhoff 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2016年第4期1-9,共9页
Measured highly elevated gains of proton–boron(HB11) fusion(Picciotto et al., Phys. Rev. X 4, 031030(2014))confirmed the exceptional avalanche reaction process(Lalousis et al., Laser Part. Beams 32, 409(2014); Hora e... Measured highly elevated gains of proton–boron(HB11) fusion(Picciotto et al., Phys. Rev. X 4, 031030(2014))confirmed the exceptional avalanche reaction process(Lalousis et al., Laser Part. Beams 32, 409(2014); Hora et al.,Laser Part. Beams 33, 607(2015)) for the combination of the non-thermal block ignition using ultrahigh intensity laser pulses of picoseconds duration. The ultrahigh acceleration above 10^(20) cm s^(-2)for plasma blocks was theoretically and numerically predicted since 1978(Hora, Physics of Laser Driven Plasmas(Wiley, 1981), pp. 178 and 179) and measured(Sauerbrey, Phys. Plasmas 3, 4712(1996)) in exact agreement(Hora et al., Phys. Plasmas 14, 072701(2007)) when the dominating force was overcoming thermal processes. This is based on Maxwell's stress tensor by the dielectric properties of plasma leading to the nonlinear(ponderomotive) force f_(NL)resulting in ultra-fast expanding plasma blocks by a dielectric explosion. Combining this with measured ultrahigh magnetic fields and the avalanche process opens an option for an environmentally absolute clean and economic boron fusion power reactor. This is supported also by other experiments with very high HB11 reactions under different conditions(Labaune et al., Nature Commun.4, 2506(2013)). 展开更多
关键词 boron fusion energy dielectric nonlinear force explosion economic reactor environmentally clean energy picosecond-non-thermal plasma block ignition
原文传递
Automated control and optimization of laser-driven ion acceleration
4
作者 B.Loughran M.J.V.Streeter +32 位作者 H.Ahmed S.Astbury M.Balcazar M.Borghesi N.Bourgeois C.B.Curry S.J.D.Dann S.DiIorio N.P.Dover T.Dzelzainis O.C.Ettlinger M.Gauthier l.giuffrida G.D.Glenn S.H.Glenzer J.S.Green R.J.Gray G.S.Hicks C.Hyland V.Istokskaia M.King D.Margarone O.McCusker P.McKenna Z.Najmudin C.Parisuaña P.Parsons C.Spindloe D.R.Symes A.G.R.Thomas F.Treffert N.Xu C.A.J.Palmer 《High Power Laser Science and Engineering》 SCIE EI CAS CSCD 2023年第3期32-40,共9页
The interaction of relativistically intense lasers with opaque targets represents a highly non-linear,multi-dimensional parameter space.This limits the utility of sequential 1D scanning of experimental parameters for ... The interaction of relativistically intense lasers with opaque targets represents a highly non-linear,multi-dimensional parameter space.This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation,although to-date this has been the accepted methodology due to low data acquisition rates.High repetition-rate(HRR)lasers augmented by machine learning present a valuable opportunity for efficient source optimization.Here,an automated,HRR-compatible system produced high-fidelity parameter scans,revealing the influence of laser intensity on target pre-heating and proton generation.A closed-loop Bayesian optimization of maximum proton energy,through control of the laser wavefront and target position,produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60%of the laser energy.This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources. 展开更多
关键词 Bayesian optimization high repetition-rate laser-target interaction laser-driven particle acceleration proton generation
原文传递
Versatile tape-drive target for high-repetition-rate laser-driven proton acceleration
5
作者 N.Xu M.J.V.Streeter +28 位作者 O.C.Ettlinger H.Ahmed S.Astbury M.Borghesi N.Bourgeois C.B.Curry S.J.D.Dann N.P.Dover T.Dzelzainis V.Istokskaia M.Gauthier l.giuffrida G.D.Glenn S.H.Glenzer R.J.Gray J.S.Green G.S.Hicks C.Hyland M.King B.Loughran D.Margarone O.McCusker P.McKenna C.Parisuaña P.Parsons C.Spindloe D.R.Symes F.Treffert C.A.J.Palmer Z.Najmudin 《High Power Laser Science and Engineering》 SCIE EI CAS CSCD 2023年第2期59-69,共11页
We present the development and characterization of a high-stability,multi-material,multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz.The tape surface position was meas... We present the development and characterization of a high-stability,multi-material,multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz.The tape surface position was measured to be stable on the sub-micrometre scale,compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers(>kHz).Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods.The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team,with the exception of tape replacement,producing the largest data-set of relativistically intense laser–solid foil measurements to date.This tape drive provides robust targetry for the generation and study of high-repetitionrate ion beams using next-generation high-power laser systems,also enabling wider applications of laser-driven proton sources. 展开更多
关键词 high-repetition-rate laser target laser-plasma acceleration proton generation tape-drive target
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部