High intensity power ultrasound was respectively introduced into three different solidification stages of Al–8%Si hypoeutectic alloy, including the fully liquid state before nucleation, the nucleation and growth proc...High intensity power ultrasound was respectively introduced into three different solidification stages of Al–8%Si hypoeutectic alloy, including the fully liquid state before nucleation, the nucleation and growth process of primary α(Al) phase and L →(Al) +(Si) eutectic transformation period. It is found that both the primary α(Al) phase and(Al + Si) eutectic structure were refined by different degrees with various growth morphologies depending on the ultrasonic treatment stage. Based on the experimental results,the cavitation-induced nucleation due to the high undercooling caused by the collapse of tiny cavities was proposed as the major reason for refining the primary α(Al) phase. Meanwhile, obvious eutectic morphological change was observed only when ultrasound was directly introduced in the eutectic transformation stage, in which typical divorced eutectics and(Al + Si) eutectic cells with symmetrical flower shape were formed at the top of the alloy sample. The introduction of ultrasound in each solidification stage also improves the yield strength of Al–8% Si alloy to a diverse extent.展开更多
A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiationwith neutron,by inv...A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiationwith neutron,by involving different types of objects,adopting up-to-date parameters and complex reaction processes as well as considering the diffusion process along with depth.The calculated results under different conditions are in good agreement with experiments much well.The model describes the behavior of helium in tungsten within 2D space of defect type/size and depth on different ions incident conditions(energies and fluences)and material conditions(system temperature and existent sinks),by including the synergistic effect of helium-neutron irradiations and the influence of inherent sinks(dislocation lines and grain boundaries).The model,coded as IRadMat,would be universally applicable to the evolution of defects for ions/neutron irradiated on plasma-facing materials.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51471134 and 51402240)the Fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201735)Ao Xiang Xin Xing Foundation of NWPU
文摘High intensity power ultrasound was respectively introduced into three different solidification stages of Al–8%Si hypoeutectic alloy, including the fully liquid state before nucleation, the nucleation and growth process of primary α(Al) phase and L →(Al) +(Si) eutectic transformation period. It is found that both the primary α(Al) phase and(Al + Si) eutectic structure were refined by different degrees with various growth morphologies depending on the ultrasonic treatment stage. Based on the experimental results,the cavitation-induced nucleation due to the high undercooling caused by the collapse of tiny cavities was proposed as the major reason for refining the primary α(Al) phase. Meanwhile, obvious eutectic morphological change was observed only when ultrasound was directly introduced in the eutectic transformation stage, in which typical divorced eutectics and(Al + Si) eutectic cells with symmetrical flower shape were formed at the top of the alloy sample. The introduction of ultrasound in each solidification stage also improves the yield strength of Al–8% Si alloy to a diverse extent.
基金The authors are very grateful to Dr.Y.Dai of Spallation Materials Technology Spallation Neutron Source Division,Paul Scherrer Institute for his helpful comments and discussions.This work was supported by special Funds for Major State Basic Research Project of China(973)under Grant nos.2007CB925004 and 2008CB717802Knowledge Innovation Program of Chinese Academy of Sciences under Grant no.KJCX2-YW-N35+1 种基金National Science Foundation of China under Grant no.11005124China Postdoctoral Science Foundation funded project under Grant no.20100470863,and Director Grants of CASHIPS.Part of the calculations were performed in Center for Computational Science of CASHIPS.
文摘A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiationwith neutron,by involving different types of objects,adopting up-to-date parameters and complex reaction processes as well as considering the diffusion process along with depth.The calculated results under different conditions are in good agreement with experiments much well.The model describes the behavior of helium in tungsten within 2D space of defect type/size and depth on different ions incident conditions(energies and fluences)and material conditions(system temperature and existent sinks),by including the synergistic effect of helium-neutron irradiations and the influence of inherent sinks(dislocation lines and grain boundaries).The model,coded as IRadMat,would be universally applicable to the evolution of defects for ions/neutron irradiated on plasma-facing materials.