On the basis of the two-continuum model of dilute gas-solid suspensions,the dynamic behavior of inertial particles in supersonic dusty-gas flows past a blunt body is studied for moderate Reynolds numbers,when the Knud...On the basis of the two-continuum model of dilute gas-solid suspensions,the dynamic behavior of inertial particles in supersonic dusty-gas flows past a blunt body is studied for moderate Reynolds numbers,when the Knudsen effect in the interphase momentum exchange is significant. The limits of the inertial particle deposition regime in the space of governing parameters are found numerically under the assumption of the slip and free-molecule flow regimes around particles.As a model problem,the flow structure is obtained for a supersonic dusty-gas point-source flow colliding with a hypersonic flow of pure gas.The calculations performed using the full Lagrangian approach for the near-symmetry-axis region and the free-molecular flow regime around the particles reveal a multi-layer structure of the dispersed-phase density with a sharp accumulation of the particles in some thin regions between the bow and termination shock waves.展开更多
基金The project supported by the National Natural Science Foundation of China (90205024),and the Russian Foundation for Basic Research (RFBR grant No.02-01-00770 and joint RFBR-NSFC grant No.03-01-39004)
文摘On the basis of the two-continuum model of dilute gas-solid suspensions,the dynamic behavior of inertial particles in supersonic dusty-gas flows past a blunt body is studied for moderate Reynolds numbers,when the Knudsen effect in the interphase momentum exchange is significant. The limits of the inertial particle deposition regime in the space of governing parameters are found numerically under the assumption of the slip and free-molecule flow regimes around particles.As a model problem,the flow structure is obtained for a supersonic dusty-gas point-source flow colliding with a hypersonic flow of pure gas.The calculations performed using the full Lagrangian approach for the near-symmetry-axis region and the free-molecular flow regime around the particles reveal a multi-layer structure of the dispersed-phase density with a sharp accumulation of the particles in some thin regions between the bow and termination shock waves.