We uncover the virtual monopoles underlying the nontrivial phases of the one-dimensional nonlinear excitations of rogue waves by extending the Dirac magnetic monopole theory to a complex plane. We find that the densit...We uncover the virtual monopoles underlying the nontrivial phases of the one-dimensional nonlinear excitations of rogue waves by extending the Dirac magnetic monopole theory to a complex plane. We find that the density zeros of the nonlinear waves on the extended complex plane constitute the virtual monopole fields with a quantized flux of elementary π. We then explain the exotic properties of rogue waves by means of a virtual monopole collision mechanism and find that the maximum amplitude amplification ratio and multiple phase steps of the high-order rogue waves are closely related to the number of their contained monopoles. These results open a new avenue for studying topological properties of nonlinear waves and provide an alternative way to understand their dynamics.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.12375005,12022513,and12235007)the National Safety Academic Fund(Grant No.U2330401)。
文摘We uncover the virtual monopoles underlying the nontrivial phases of the one-dimensional nonlinear excitations of rogue waves by extending the Dirac magnetic monopole theory to a complex plane. We find that the density zeros of the nonlinear waves on the extended complex plane constitute the virtual monopole fields with a quantized flux of elementary π. We then explain the exotic properties of rogue waves by means of a virtual monopole collision mechanism and find that the maximum amplitude amplification ratio and multiple phase steps of the high-order rogue waves are closely related to the number of their contained monopoles. These results open a new avenue for studying topological properties of nonlinear waves and provide an alternative way to understand their dynamics.