期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Soft ground tunnel lithology classification using clustering-guided light gradient boosting machine
1
作者 kursat kilic Hajime Ikeda +1 位作者 Tsuyoshi Adachi Youhei Kawamura 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2857-2867,共11页
During tunnel boring machine(TBM)excavation,lithology identification is an important issue to understand tunnelling performance and avoid time-consuming excavation.However,site investigation generally lacks ground sam... During tunnel boring machine(TBM)excavation,lithology identification is an important issue to understand tunnelling performance and avoid time-consuming excavation.However,site investigation generally lacks ground samples and the information is subjective,heterogeneous,and imbalanced due to mixed ground conditions.In this study,an unsupervised(K-means)and synthetic minority oversampling technique(SMOTE)-guided light-gradient boosting machine(LightGBM)classifier is proposed to identify the soft ground tunnel classification and determine the imbalanced issue of tunnelling data.During the tunnel excavation,an earth pressure balance(EPB)TBM recorded 18 different operational parameters along with the three main tunnel lithologies.The proposed model is applied using Python low-code PyCaret library.Next,four decision tree-based classifiers were obtained in a short time period with automatic hyperparameter tuning to determine the best model for clustering-guided SMOTE application.In addition,the Shapley additive explanation(SHAP)was implemented to avoid the model black box problem.The proposed model was evaluated using different metrics such as accuracy,F1 score,precision,recall,and receiver operating characteristics(ROC)curve to obtain a reasonable outcome for the minority class.It shows that the proposed model can provide significant tunnel lithology identification based on the operational parameters of EPB-TBM.The proposed method can be applied to heterogeneous tunnel formations with several TBM operational parameters to describe the tunnel lithologies for efficient tunnelling. 展开更多
关键词 Earth pressure balance(EPB) Tunnel boring machine(TBM) Soft ground tunnelling Tunnel lithology Operational parameters Synthetic minority oversampling technique (SMOTE) K-means clustering
在线阅读 下载PDF
Indirect evaluation of the influence of rock boulders in blasting to the geohazard:Unearthing geologic insights fused with tree seed based LSTM algorithm 被引量:1
2
作者 Blessing Olamide Taiwo Shahab Hosseini +6 位作者 Yewuhalashet Fissha kursat kilic Omosebi Akinwale Olusola NSri Chandrahas Enming Li Adams Abiodun Akinlabi Naseer Muhammad Khan 《Geohazard Mechanics》 2024年第4期244-257,共14页
Effective control of blasting outcomes depends on a thorough understanding of rock geology and the integration of geological characteristics with blast design parameters.This study underscores the importance of adapti... Effective control of blasting outcomes depends on a thorough understanding of rock geology and the integration of geological characteristics with blast design parameters.This study underscores the importance of adapting blast design parameters to geological conditions to optimize the utilization of explosive energy for rock fragmentation.To achieve this,data on fifty geo-blast design parameters were collected and used to train machine learning algorithms.The objective was to develop predictive models for estimating the blast oversize percentage,incorporating seven controlled components and one uncontrollable index.The study employed a combination of hybrid long-short-term memory(LSTM),support vector regression,and random forest algorithms.Among these,the LSTM model enhanced with the tree seed algorithm(LSTM-TSA)demonstrated the highest prediction accuracy when handling large datasets.The LSTM-TSA soft computing model was specifically leveraged to optimize various blast parameters such as burden,spacing,stemming length,drill hole length,charge length,powder factor,and joint set number.The estimated percentage oversize values for these parameters were determined as 0.7 m,0.9 m,0.65 m,1.4 m,0.7 m,1.03 kg/m^(3),35%,and 2,respectively.Application of the LSTM-TSA model resulted in a significant 28.1%increase in the crusher's production rate,showcasing its effectiveness in improving blasting operations. 展开更多
关键词 Oversize boulder BLASTING Image analysis Downstream operation Artificial intelligence
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部