期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The recent progress of transition metal dichalcogenides-based photothermal materials for solar water generation
1
作者 Chen Gu Huacao Ji +5 位作者 keyu xu Jianmei Chen Kang Chen Junan Pan Ning Sun Longlu Wang 《Chinese Chemical Letters》 2025年第8期7-17,共11页
At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenid... At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenides(TMDs)has excellent photothermal properties and plays a key role in photothermal seawater desalination.In recent years,a lot of progress has been made regarding TMDs in photothermal seawater desalination,so it is necessary to review the progress of TMDs structure regulation in improving photothermal properties to further enhance the development of this filed.In this review,firstly,various structural regulation methods of TMDs to optimize its properties and improve the performance of photothermal seawater desalination are comprehensively summarized.Secondly,the relationship between unique structure and its photothermal properties of TMDs is further detailedly discussed.Last but not least,we have provided some suggestions in the solar desalination applying TMDs in future.This review would provide a very important reference for the research of structure regulation of TMDs for effective photothermal seawater desalination. 展开更多
关键词 Transition metal dichalcogenides Photothermal seawater desalination Structureregulation Composite material Saltdeposition
原文传递
Designing multi-heterogeneous interfaces of Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)hybrid for hydrogen evolution 被引量:3
2
作者 Haoxuan Yu Junan Pan +5 位作者 Yuxin Zhang Longlu Wang Huachao Ji keyu xu Ting Zhi Zechao Zhuang 《Nano Research》 SCIE EI CSCD 2024年第6期4782-4789,共8页
The transition metal chalcogenides represented by MoS_(2)are the ideal choice for non-precious metal-based hydrogen evolution catalysts.However,whether in acidic or alkaline environments,the catalytic activity of pure... The transition metal chalcogenides represented by MoS_(2)are the ideal choice for non-precious metal-based hydrogen evolution catalysts.However,whether in acidic or alkaline environments,the catalytic activity of pure MoS_(2)is still difficult to compete with Pt.Recent studies have shown that the electronic structure of materials can be adjusted by constructing lattice-matched heterojunctions,thus optimizing the adsorption free energy of intermediates in the catalytic hydrogen production process of materials,so as to effectively improve the electrocatalytic hydrogen production activity of catalysts.However,it is still a great challenge to prepare heterojunctions with lattice-matched structures as efficient electrocatalytic hydrogen production catalysts.Herein,we developed a one-step hydrothermal method to construct Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)(Ni-MoS_(2)on behalf of Ni doping MoS_(2))electrocatalyst with multiple heterogeneous interfaces which possesses rich catalytic reaction sites.The Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)electrocatalyst produced an extremely low overpotential of 69.4 mV with 10 mA·cm^(−2)current density for hydrogen evolution reaction(HER)in 1.0 M KOH.This work provides valuable enlightenment for exploring the mechanism of HER enhancement to optimize the surface electronic structure of MoS_(2),and provides an effective idea for constructing rare metal catalysts in HER and other fields. 展开更多
关键词 MoS_(2) HETEROJUNCTIONS multiple heterogeneous interfaces hydrogen evolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部