At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenid...At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenides(TMDs)has excellent photothermal properties and plays a key role in photothermal seawater desalination.In recent years,a lot of progress has been made regarding TMDs in photothermal seawater desalination,so it is necessary to review the progress of TMDs structure regulation in improving photothermal properties to further enhance the development of this filed.In this review,firstly,various structural regulation methods of TMDs to optimize its properties and improve the performance of photothermal seawater desalination are comprehensively summarized.Secondly,the relationship between unique structure and its photothermal properties of TMDs is further detailedly discussed.Last but not least,we have provided some suggestions in the solar desalination applying TMDs in future.This review would provide a very important reference for the research of structure regulation of TMDs for effective photothermal seawater desalination.展开更多
The transition metal chalcogenides represented by MoS_(2)are the ideal choice for non-precious metal-based hydrogen evolution catalysts.However,whether in acidic or alkaline environments,the catalytic activity of pure...The transition metal chalcogenides represented by MoS_(2)are the ideal choice for non-precious metal-based hydrogen evolution catalysts.However,whether in acidic or alkaline environments,the catalytic activity of pure MoS_(2)is still difficult to compete with Pt.Recent studies have shown that the electronic structure of materials can be adjusted by constructing lattice-matched heterojunctions,thus optimizing the adsorption free energy of intermediates in the catalytic hydrogen production process of materials,so as to effectively improve the electrocatalytic hydrogen production activity of catalysts.However,it is still a great challenge to prepare heterojunctions with lattice-matched structures as efficient electrocatalytic hydrogen production catalysts.Herein,we developed a one-step hydrothermal method to construct Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)(Ni-MoS_(2)on behalf of Ni doping MoS_(2))electrocatalyst with multiple heterogeneous interfaces which possesses rich catalytic reaction sites.The Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)electrocatalyst produced an extremely low overpotential of 69.4 mV with 10 mA·cm^(−2)current density for hydrogen evolution reaction(HER)in 1.0 M KOH.This work provides valuable enlightenment for exploring the mechanism of HER enhancement to optimize the surface electronic structure of MoS_(2),and provides an effective idea for constructing rare metal catalysts in HER and other fields.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51902101)Natural Science Foundation of Jiangsu Province(No.BK20201381)。
文摘At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenides(TMDs)has excellent photothermal properties and plays a key role in photothermal seawater desalination.In recent years,a lot of progress has been made regarding TMDs in photothermal seawater desalination,so it is necessary to review the progress of TMDs structure regulation in improving photothermal properties to further enhance the development of this filed.In this review,firstly,various structural regulation methods of TMDs to optimize its properties and improve the performance of photothermal seawater desalination are comprehensively summarized.Secondly,the relationship between unique structure and its photothermal properties of TMDs is further detailedly discussed.Last but not least,we have provided some suggestions in the solar desalination applying TMDs in future.This review would provide a very important reference for the research of structure regulation of TMDs for effective photothermal seawater desalination.
基金the National Natural Science Foundation of China(No.51902101)Natural Science Foundation of Jiangsu Province(No.BK20201381)+1 种基金Science Foundation of Nanjing University of Posts and Telecommunications(Nos.NY219144 and NY221046)the National College Student Innovation and Entrepreneurship Training Program(No.202210293171K).
文摘The transition metal chalcogenides represented by MoS_(2)are the ideal choice for non-precious metal-based hydrogen evolution catalysts.However,whether in acidic or alkaline environments,the catalytic activity of pure MoS_(2)is still difficult to compete with Pt.Recent studies have shown that the electronic structure of materials can be adjusted by constructing lattice-matched heterojunctions,thus optimizing the adsorption free energy of intermediates in the catalytic hydrogen production process of materials,so as to effectively improve the electrocatalytic hydrogen production activity of catalysts.However,it is still a great challenge to prepare heterojunctions with lattice-matched structures as efficient electrocatalytic hydrogen production catalysts.Herein,we developed a one-step hydrothermal method to construct Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)(Ni-MoS_(2)on behalf of Ni doping MoS_(2))electrocatalyst with multiple heterogeneous interfaces which possesses rich catalytic reaction sites.The Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)electrocatalyst produced an extremely low overpotential of 69.4 mV with 10 mA·cm^(−2)current density for hydrogen evolution reaction(HER)in 1.0 M KOH.This work provides valuable enlightenment for exploring the mechanism of HER enhancement to optimize the surface electronic structure of MoS_(2),and provides an effective idea for constructing rare metal catalysts in HER and other fields.