El Niño-Southern Oscillation(ENSO)affects the changes in ocean physical elements in Taiwan Strait(TWS)primarily by regulating the strength of the East Asian Winter Monsoon(EAWM)and the intrusion of the Kuroshio.A...El Niño-Southern Oscillation(ENSO)affects the changes in ocean physical elements in Taiwan Strait(TWS)primarily by regulating the strength of the East Asian Winter Monsoon(EAWM)and the intrusion of the Kuroshio.Additionally,the fluctuating impact between nutrient-poor seawater with high dissolved inorganic carbon(DIC)that infiltrates owing to the Kuroshio during El Niño phases and nutrient-rich seawater with low DIC from the South China Sea(SCS)carried by the EAWM during La Niña phases determines the nutrient content in TWS,thereby sculpting appropriate or unsuitable biochemical environment.In this study,based on high-resolution sea-surface partial pressure of carbon dioxide(pCO_(2))data,we investigate the relationship between pCO_(2)level of TWS and ENSO events in winter.The physical mechanisms affecting the anomalous distribution of pCO_(2)level during ENSO are also explored.Stepwise regression was employed to identify the optimal influencing factors for modeling pCO_(2).Results indicate a significant positive correlation between Niño3.4 index and pCO_(2),which is significantly influenced by factors such as sea-surface temperature(SST),chlorophyll-a(Chl a),and DIC.These are related to the anomalously strong Kuroshio intrusion and weaker EAWM during El Niño years.It brings a large amount of high SST water with low nutrient concentration and high DIC,which is detrimental to CO_(2)dissolution and phytoplankton growth over the TWS,leading to an increase in pCO_(2).Conversely,pCO_(2)level is significantly low under the influence of SCS seawater during La Niña years.Based on the characterization of the pCO_(2)level response to ENSO,the carbon balance at TWS can be explored.展开更多
基金The Key R&D Project of Zhejiang Province under contract No.2023C03120the General Scientific Research Project of Zhejiang Province under contract No.Y202353957the National Natural Science Foundation of China under contract No.42106017.
文摘El Niño-Southern Oscillation(ENSO)affects the changes in ocean physical elements in Taiwan Strait(TWS)primarily by regulating the strength of the East Asian Winter Monsoon(EAWM)and the intrusion of the Kuroshio.Additionally,the fluctuating impact between nutrient-poor seawater with high dissolved inorganic carbon(DIC)that infiltrates owing to the Kuroshio during El Niño phases and nutrient-rich seawater with low DIC from the South China Sea(SCS)carried by the EAWM during La Niña phases determines the nutrient content in TWS,thereby sculpting appropriate or unsuitable biochemical environment.In this study,based on high-resolution sea-surface partial pressure of carbon dioxide(pCO_(2))data,we investigate the relationship between pCO_(2)level of TWS and ENSO events in winter.The physical mechanisms affecting the anomalous distribution of pCO_(2)level during ENSO are also explored.Stepwise regression was employed to identify the optimal influencing factors for modeling pCO_(2).Results indicate a significant positive correlation between Niño3.4 index and pCO_(2),which is significantly influenced by factors such as sea-surface temperature(SST),chlorophyll-a(Chl a),and DIC.These are related to the anomalously strong Kuroshio intrusion and weaker EAWM during El Niño years.It brings a large amount of high SST water with low nutrient concentration and high DIC,which is detrimental to CO_(2)dissolution and phytoplankton growth over the TWS,leading to an increase in pCO_(2).Conversely,pCO_(2)level is significantly low under the influence of SCS seawater during La Niña years.Based on the characterization of the pCO_(2)level response to ENSO,the carbon balance at TWS can be explored.