Artificial facial nerve prostheses are thought to restore eye-closed function in peripheral facial paralysis patients.At present,however,there is no adequate quantitative or qualitative information regarding myoelectr...Artificial facial nerve prostheses are thought to restore eye-closed function in peripheral facial paralysis patients.At present,however,there is no adequate quantitative or qualitative information regarding myoelectric signal(MES)features for healthy orbiculads oculi muscle(OOM).The present study analyzed MES features of normal OOM in rabbits during the natural continuous eye-opening(N1)state,natural continuous eye-closing(N2)state,natural blink(N3)state,and evoked eye-closing(E)state according to time domain and frequency domain analysis.Results showed that OOM electrical activities in N1 and N2 states,as well as myoelectric amplitude,were low and stable.Nevertheless,during N3 and E states,OOM electrical activities were significantly increased and amplitude was much higher in the E state than in the N3 state.In the time domain,differences in MES peak absolute potential were not significant between N1 and N2 states,in the frequency domain,differences in power spectral density peak frequency of electromyogram signals were significant between two sets of four OOM movement states.These results suggest that OOM significantly contracts and induces eyelid-closing action.In addition,OOM is diastolic during the N1state.A N2 state does not require continuous intensive OOM contraction.Moreover,distinctions of quantitative information in time and frequency domain features of MES can be used as an OOM reference to identify muscle movement patterns.展开更多
To date, treatment of peripheral facial paralysis has focused on preservation of facial nerve integrity. However, with seriously damaged facial nerve cases, it is difficult to recover anatomical and functional integri...To date, treatment of peripheral facial paralysis has focused on preservation of facial nerve integrity. However, with seriously damaged facial nerve cases, it is difficult to recover anatomical and functional integrity using present therapies. Therefore, the present study utilized artificial facial nerve reflex to obtain orbicularis oculi muscle (OOM) electromyography signals on the uninjured side through the use of implanted recording electrodes. The implanted electrical chips analyzed facial muscle motion on the uninjured side and triggered an electrical stimulator to emit current pulses, which resulted in stimulation of injured OOM contraction and maintained bilateral symmetry and consistency. Following signal recognition, extraction, and computer analysis, electromyography signals in the uninjured OOM resulted in complete eyelid closure, which was consistent with the voltage threshold for eye closure. These findings suggested that artificial facial nerve reflex through the use of implanted microelectronics in unilateral peripheral facial paralysis could restore eyelid closure following orbicularis oculi muscle denervation.展开更多
基金the National Natural Science Foundation of China,No.60876082,81070779the grant from Shanghai Committee of Science and Technology,No.0852nm06600the "Shu Guang" Project supported by Shanghai Municipal Educa-tion Commission and Shanghai Education Devel-opment Foundation,No.08SG13
文摘Artificial facial nerve prostheses are thought to restore eye-closed function in peripheral facial paralysis patients.At present,however,there is no adequate quantitative or qualitative information regarding myoelectric signal(MES)features for healthy orbiculads oculi muscle(OOM).The present study analyzed MES features of normal OOM in rabbits during the natural continuous eye-opening(N1)state,natural continuous eye-closing(N2)state,natural blink(N3)state,and evoked eye-closing(E)state according to time domain and frequency domain analysis.Results showed that OOM electrical activities in N1 and N2 states,as well as myoelectric amplitude,were low and stable.Nevertheless,during N3 and E states,OOM electrical activities were significantly increased and amplitude was much higher in the E state than in the N3 state.In the time domain,differences in MES peak absolute potential were not significant between N1 and N2 states,in the frequency domain,differences in power spectral density peak frequency of electromyogram signals were significant between two sets of four OOM movement states.These results suggest that OOM significantly contracts and induces eyelid-closing action.In addition,OOM is diastolic during the N1state.A N2 state does not require continuous intensive OOM contraction.Moreover,distinctions of quantitative information in time and frequency domain features of MES can be used as an OOM reference to identify muscle movement patterns.
基金the National Natural Science Foundation of China,No.60876082Shanghai Committee of Science and Technology,No.0852nm06600Shanghai Municipal Education Committee Shanghai "Phosphor" Science Foundation,China,No.08SG13
文摘To date, treatment of peripheral facial paralysis has focused on preservation of facial nerve integrity. However, with seriously damaged facial nerve cases, it is difficult to recover anatomical and functional integrity using present therapies. Therefore, the present study utilized artificial facial nerve reflex to obtain orbicularis oculi muscle (OOM) electromyography signals on the uninjured side through the use of implanted recording electrodes. The implanted electrical chips analyzed facial muscle motion on the uninjured side and triggered an electrical stimulator to emit current pulses, which resulted in stimulation of injured OOM contraction and maintained bilateral symmetry and consistency. Following signal recognition, extraction, and computer analysis, electromyography signals in the uninjured OOM resulted in complete eyelid closure, which was consistent with the voltage threshold for eye closure. These findings suggested that artificial facial nerve reflex through the use of implanted microelectronics in unilateral peripheral facial paralysis could restore eyelid closure following orbicularis oculi muscle denervation.