期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A data representation method using distance correlation
1
作者 Xinyan LIANG Yuhua QIAN +1 位作者 Qian GUO keyin zheng 《Frontiers of Computer Science》 2025年第1期1-14,共14页
Association in-between features has been demonstrated to improve the representation ability of data. However, the original association data reconstruction method may face two issues: the dimension of reconstructed dat... Association in-between features has been demonstrated to improve the representation ability of data. However, the original association data reconstruction method may face two issues: the dimension of reconstructed data is undoubtedly higher than that of original data, and adopted association measure method does not well balance effectiveness and efficiency. To address above two issues, this paper proposes a novel association-based representation improvement method, named as AssoRep. AssoRep first obtains the association between features via distance correlation method that has some advantages than Pearson’s correlation coefficient. Then an improved matrix is formed via stacking the association value of any two features. Next, an improved feature representation is obtained by aggregating the original feature with the enhancement matrix. Finally, the improved feature representation is mapped to a low-dimensional space via principal component analysis. The effectiveness of AssoRep is validated on 120 datasets and the fruits further prefect our previous work on the association data reconstruction. 展开更多
关键词 ASSOCIATION REPRESENTATION distance correlation CLASSIFICATION
原文传递
三维时频变换视角的智能微观三维形貌重建方法 被引量:6
2
作者 闫涛 钱宇华 +10 位作者 李飞江 闫泓任 王婕婷 梁吉业 郑珂银 吴鹏 陈路 胡治国 乔志伟 张江峰 翟小鹏 《中国科学:信息科学》 CSCD 北大核心 2023年第2期282-308,共27页
基于图像聚焦信息的三维形貌重建方法通常对微观物体的景深图像序列采用统一的聚焦评价标准,这类重建方法往往会忽视图像序列之间的联系,难以修正图像纹理稀疏或低对比度导致的连续帧深度误差.鉴于三维数据特有的多维度信息关联特性,本... 基于图像聚焦信息的三维形貌重建方法通常对微观物体的景深图像序列采用统一的聚焦评价标准,这类重建方法往往会忽视图像序列之间的联系,难以修正图像纹理稀疏或低对比度导致的连续帧深度误差.鉴于三维数据特有的多维度信息关联特性,本文将微观物体的不同景深图像序列视为三维数据,在重建过程中引入全部图像序列之间的关联关系,从三维数据时频变换的视角构造了以多视角分析、稳定性聚类、选择性融合逻辑耦合的微观三维形貌重建框架.首先从理论上分析三维数据相较于传统二维图像处理重建问题的优势,通过构造三维时频变换实现三维数据到不同尺度、区域和方向深度图像之间的映射;然后从增强深度图像特征的角度构建基于多模态纹理特征的局部稳定性聚类算法,实现同质性较好深度图像的自适应选择;最后提出选择性深度图像融合的策略,通过构造层筛过滤平衡树对滤除离散噪声后的多层深度图像进行融合,实现微观物体高精度的三维形貌重建.模拟数据与真实场景数据均验证了本文方法的有效性.三维时频变换视角的智能微观三维重建方法为基于图像聚焦信息的三维形貌重建提供一个崭新的研究视角,在精密制造、亚微米级工业测量等领域具有重要的理论意义和应用价值. 展开更多
关键词 三维重建 无监督学习 稳定性聚类 深度图像 时频变换
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部