The Carboniferous period lasted about 60 Myr, from ~358.9 Ma to ~298.9 Ma. According to the International Commission on Stratigraphy, the Carboniferous System is subdivided into two subsystems, i.e., Mississippian a...The Carboniferous period lasted about 60 Myr, from ~358.9 Ma to ~298.9 Ma. According to the International Commission on Stratigraphy, the Carboniferous System is subdivided into two subsystems, i.e., Mississippian and Pennsylvanian, including 6 series and 7 stages. The Global Stratotype Sections and Points(GSSPs) of three stages have been ratified, the Tournaisian, Visean, and Bashkirian stages. The GSSPs of the remaining four stages(i.e., the Serpukhovian, Moscovian,Kasimovian, and Gzhelian) have not been ratified so far. This paper outlines Carboniferous stratigraphic subdivision and correlation on the basis of detailed biostratigraphy mainly from South China, and summarizes the Carboniferous chronostratigraphic framework of China. High-resolution biostratigraphic study reveals 37 conodont zones, 24 foraminiferal(including fusulinid) zones, 13 ammonoid zones, 10 brachiopod zones, and 10 rugose coral zones in the Carboniferous of China. The biostratigraphic framework based on these biozones warrants the precise correlation of regional stratigraphy of China(including2 subsystems, 4 series, and 8 stages) to that of the other regions globally. Meanwhile, the Carboniferous chemo-, sequence-,cyclo-, and event-stratigraphy of China have been intensively studied and can also be correlated worldwide. Future studies on the Carboniferous in China should focus on(1) the correlation between shallow-and deep-water facies and between marine and continental facies,(2) high-resolution astronomical cyclostratigraphy, and(3) paleoenvironment and paleoclimate analysis based on geochemical proxies such as strontium and oxygen isotopes, as well as stomatal indices of fossil plants.展开更多
During the Carboniferous Period,the Qinghai-Tibetan Plateau and its surrounding areas were located in quite different paleogeographic positions with various sedimentary and biological types.It is important to systemat...During the Carboniferous Period,the Qinghai-Tibetan Plateau and its surrounding areas were located in quite different paleogeographic positions with various sedimentary and biological types.It is important to systematically compile and summarize the Carboniferous strata and biotas of the Qinghai-Tibetan Plateau and its surrounding areas,to establish an integrated stratigraphic framework for correlation,and to reconstruct the paleogeography for correctly understanding the breakup of the Gondwana Continent and the evolution of the Paleo-Tethys Ocean in the Late Paleozoic.The Carboniferous of the Qinghai-Tibetan Plateau and its surrounding areas can be subdivided into the Gondwanan,Cimmerian,and Tethyan types.The Gondwanan-type Carboniferous are distributed in the North Himalayan,Kangmar-Lhunze,and Zanda-Zumba regions of the South Xizang Subprovince and northern India-Pakistan Area,where only the Mississippian is developed and the biota is of Gondwanan affinity.The Cimmerian-type Carboniferous,which are found in the Baoshan,Tengchong,Coqen-Xainza,LhasaZayu,Nagqu-Biru,and South Qiangtang regions,as well as Shan-Thai and South Afghanistan-Pamir areas,also represent only the Mississippian strata,but their biota is characterized by mixed characters of European,South China,Australian,and North American types.The Tethyan-type Carboniferous are distributed in the Tanggula Mountains,Hoh Xil-Bayanhar,ChamdoHengduanshan,Tiekelike,West Kunlun,Karakorum,East Kunlun-Central Qinling,and Qilian regions,where the Carboniferous succession is well developed,and the biota is of warm-water Tethyan affinity.The biostratigraphical correlation of the Gondwanan-type and Cimmerian-type Carboniferous is based mainly on conodonts and additionally on brachiopods and rugose corals.The Mississippian of the Tethyan-type Carboniferous is correlated mainly by using rugose corals and brachiopods,whereas in the Pennsylvanian foraminifera(fusuline)and conodonts are regarded as primary fossil groups,subordinated by rugose corals and brachiopods.Adhering to the International standard chronostratigraphy of the Carboniferous,we have reconstructed a framework of the litho-and biostratigraphic subdivision and correlation of the Qinghai-Tibetan Plateau and its surrounding areas.Further studies should focus on isotope geochronology,geochemistry,paleoclimates,and paleoenvironments of the Carboniferous in the Qinghai-Tibetan Plateau and its surrounding areas.展开更多
基金supported by the Chinese Academy of Sciences (Grant Nos. XDB26000000, 18000000 and XDPB05)the National Natural Science Foundation of China (Grant No. 41290263)and the Ministry of Science and Technology of China (Grant No. 2013FY111000)
文摘The Carboniferous period lasted about 60 Myr, from ~358.9 Ma to ~298.9 Ma. According to the International Commission on Stratigraphy, the Carboniferous System is subdivided into two subsystems, i.e., Mississippian and Pennsylvanian, including 6 series and 7 stages. The Global Stratotype Sections and Points(GSSPs) of three stages have been ratified, the Tournaisian, Visean, and Bashkirian stages. The GSSPs of the remaining four stages(i.e., the Serpukhovian, Moscovian,Kasimovian, and Gzhelian) have not been ratified so far. This paper outlines Carboniferous stratigraphic subdivision and correlation on the basis of detailed biostratigraphy mainly from South China, and summarizes the Carboniferous chronostratigraphic framework of China. High-resolution biostratigraphic study reveals 37 conodont zones, 24 foraminiferal(including fusulinid) zones, 13 ammonoid zones, 10 brachiopod zones, and 10 rugose coral zones in the Carboniferous of China. The biostratigraphic framework based on these biozones warrants the precise correlation of regional stratigraphy of China(including2 subsystems, 4 series, and 8 stages) to that of the other regions globally. Meanwhile, the Carboniferous chemo-, sequence-,cyclo-, and event-stratigraphy of China have been intensively studied and can also be correlated worldwide. Future studies on the Carboniferous in China should focus on(1) the correlation between shallow-and deep-water facies and between marine and continental facies,(2) high-resolution astronomical cyclostratigraphy, and(3) paleoenvironment and paleoclimate analysis based on geochemical proxies such as strontium and oxygen isotopes, as well as stomatal indices of fossil plants.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0706)the National Natural Science Foundation of China(Grant Nos.91955201,42172002)。
文摘During the Carboniferous Period,the Qinghai-Tibetan Plateau and its surrounding areas were located in quite different paleogeographic positions with various sedimentary and biological types.It is important to systematically compile and summarize the Carboniferous strata and biotas of the Qinghai-Tibetan Plateau and its surrounding areas,to establish an integrated stratigraphic framework for correlation,and to reconstruct the paleogeography for correctly understanding the breakup of the Gondwana Continent and the evolution of the Paleo-Tethys Ocean in the Late Paleozoic.The Carboniferous of the Qinghai-Tibetan Plateau and its surrounding areas can be subdivided into the Gondwanan,Cimmerian,and Tethyan types.The Gondwanan-type Carboniferous are distributed in the North Himalayan,Kangmar-Lhunze,and Zanda-Zumba regions of the South Xizang Subprovince and northern India-Pakistan Area,where only the Mississippian is developed and the biota is of Gondwanan affinity.The Cimmerian-type Carboniferous,which are found in the Baoshan,Tengchong,Coqen-Xainza,LhasaZayu,Nagqu-Biru,and South Qiangtang regions,as well as Shan-Thai and South Afghanistan-Pamir areas,also represent only the Mississippian strata,but their biota is characterized by mixed characters of European,South China,Australian,and North American types.The Tethyan-type Carboniferous are distributed in the Tanggula Mountains,Hoh Xil-Bayanhar,ChamdoHengduanshan,Tiekelike,West Kunlun,Karakorum,East Kunlun-Central Qinling,and Qilian regions,where the Carboniferous succession is well developed,and the biota is of warm-water Tethyan affinity.The biostratigraphical correlation of the Gondwanan-type and Cimmerian-type Carboniferous is based mainly on conodonts and additionally on brachiopods and rugose corals.The Mississippian of the Tethyan-type Carboniferous is correlated mainly by using rugose corals and brachiopods,whereas in the Pennsylvanian foraminifera(fusuline)and conodonts are regarded as primary fossil groups,subordinated by rugose corals and brachiopods.Adhering to the International standard chronostratigraphy of the Carboniferous,we have reconstructed a framework of the litho-and biostratigraphic subdivision and correlation of the Qinghai-Tibetan Plateau and its surrounding areas.Further studies should focus on isotope geochronology,geochemistry,paleoclimates,and paleoenvironments of the Carboniferous in the Qinghai-Tibetan Plateau and its surrounding areas.