Fruit spine density is an important commercial trait for cucumber(Cucumis sativus L.).Most North China-type cucumbers that are grown over large areas have a dense-spine phenotype,which directly affects the appearance ...Fruit spine density is an important commercial trait for cucumber(Cucumis sativus L.).Most North China-type cucumbers that are grown over large areas have a dense-spine phenotype,which directly affects the appearance quality,storage,and transportation of the fruits.Here,we isolated a novel few spines mutant(fs2)from the wild-type(WT)inbred line WD1,a North China-type cucumber with high density fruit spines,by an ethyl methanesulfonate(EMS)mutagenesis treatment.Genetic analysis revealed that the phenotype of fs2 is controlled by a single recessive nuclear gene.We fine-mapped the fs2 locus using F_(2) and BC_(1) populations(1,802 and 420 individuals,respectively),which showed that the candidate gene of FS2(Csa4G652850)encodes an ARID-HMG transcription factor containing an AT-rich interaction domain(ARID)and a high mobility group box domain(HMG).One SNP(C to T)and one InDel(a 40-bp deletion)in the coding region of FS2 result in amino acid variation and premature translation termination in the fs2 mutant,respectively.FS2 was found to be highly expressed in the apical buds and young ovaries.In addition,experiments suggest that FS2 participates in the regulation of fruit spine initiation by activating the expression of the Tril gene in cucumber.This work provides not only an important reference for understanding the molecular mechanisms of fruit spine development but also an important resource for fruit appearance quality breeding in cucumber.展开更多
China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C...China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C/D,is seldom discussed.This study evaluated the performance of all the HY-2 series satellites in recovering marine gravity field.First,the crossover discrepancies in sea surface height of the four satellites,HY-2A,HY-2B,HY-2C,and HY-2D,were analyzed to assess their altimetry stability.It was found that HY-2B had the best altimetry quality,followed by HY-2D.Subsequently,different combina-tions of altimetry data were used to calculate vertical deflections and gravity anomalies in the South China Sea(112°E-119°E,12°N-20°N).The results showed that combining data from HY-2B,HY-2C,and HY-2D improved the inversion accuracy of gravity anomalies by 0.3 mGal compared to using HY-2A data alone.HY-2C and HY-2D contributed to enhancing the accuracy of the east component of vertical deflections.展开更多
Wound dressing materials which are capable of meeting the demands of accelerating wound closure and promoting wound healing process have being highly desired.Electrospun nanofibrous materials show great application po...Wound dressing materials which are capable of meeting the demands of accelerating wound closure and promoting wound healing process have being highly desired.Electrospun nanofibrous materials show great application potentials for wound healing owing to relatively large surface area,better mimicry of native extracellular matrix,adjustable waterproofness and breathability,and programmable drug delivery process.In this review article,we begin with a discussion of wound healing process and current commercial wound dressing materials.Then,we emphasize on electrospun nanofibrous materials for wound dressing,covering the efforts for controlling fiber alignment and morphology,constructing 3D scaffolds,developing waterproof-breathable membrane,governing drug delivery performance,and regulating stem cell behavior.Finally,we finish with challenges and future prospects of electrospun nanofibrous materials for wound dressings.展开更多
基金supported by the National Natural Science Foundation of China(31972425)the Shanghai Agriculture Applied Technology Development Program,China(2020-02-08-00-08-F0148)。
文摘Fruit spine density is an important commercial trait for cucumber(Cucumis sativus L.).Most North China-type cucumbers that are grown over large areas have a dense-spine phenotype,which directly affects the appearance quality,storage,and transportation of the fruits.Here,we isolated a novel few spines mutant(fs2)from the wild-type(WT)inbred line WD1,a North China-type cucumber with high density fruit spines,by an ethyl methanesulfonate(EMS)mutagenesis treatment.Genetic analysis revealed that the phenotype of fs2 is controlled by a single recessive nuclear gene.We fine-mapped the fs2 locus using F_(2) and BC_(1) populations(1,802 and 420 individuals,respectively),which showed that the candidate gene of FS2(Csa4G652850)encodes an ARID-HMG transcription factor containing an AT-rich interaction domain(ARID)and a high mobility group box domain(HMG).One SNP(C to T)and one InDel(a 40-bp deletion)in the coding region of FS2 result in amino acid variation and premature translation termination in the fs2 mutant,respectively.FS2 was found to be highly expressed in the apical buds and young ovaries.In addition,experiments suggest that FS2 participates in the regulation of fruit spine initiation by activating the expression of the Tril gene in cucumber.This work provides not only an important reference for understanding the molecular mechanisms of fruit spine development but also an important resource for fruit appearance quality breeding in cucumber.
基金funded by the National Natural Science Foundation of China(No.42074017).
文摘China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C/D,is seldom discussed.This study evaluated the performance of all the HY-2 series satellites in recovering marine gravity field.First,the crossover discrepancies in sea surface height of the four satellites,HY-2A,HY-2B,HY-2C,and HY-2D,were analyzed to assess their altimetry stability.It was found that HY-2B had the best altimetry quality,followed by HY-2D.Subsequently,different combina-tions of altimetry data were used to calculate vertical deflections and gravity anomalies in the South China Sea(112°E-119°E,12°N-20°N).The results showed that combining data from HY-2B,HY-2C,and HY-2D improved the inversion accuracy of gravity anomalies by 0.3 mGal compared to using HY-2A data alone.HY-2C and HY-2D contributed to enhancing the accuracy of the east component of vertical deflections.
基金This work was supported by the National Natural Science Foundation of China(81771338)Natural Science Foundation of Shanghai(19ZR1470500)+1 种基金the Science and Technology Commission of Shanghai Municipality(18511109500)the Fundamental Research Funds for the Central Universities(223201900081).
文摘Wound dressing materials which are capable of meeting the demands of accelerating wound closure and promoting wound healing process have being highly desired.Electrospun nanofibrous materials show great application potentials for wound healing owing to relatively large surface area,better mimicry of native extracellular matrix,adjustable waterproofness and breathability,and programmable drug delivery process.In this review article,we begin with a discussion of wound healing process and current commercial wound dressing materials.Then,we emphasize on electrospun nanofibrous materials for wound dressing,covering the efforts for controlling fiber alignment and morphology,constructing 3D scaffolds,developing waterproof-breathable membrane,governing drug delivery performance,and regulating stem cell behavior.Finally,we finish with challenges and future prospects of electrospun nanofibrous materials for wound dressings.