期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
In-situ encapsulation ofα-Fe_(2)O_(3) nanoparticles into ZnFe_(2)O_(4) micro-sized capsules as high-performance lithium-ion battery anodes 被引量:1
1
作者 wei Wu Yongshan wei +6 位作者 Hongjiang Chen keyan wei Zhitong Li Jianhui He Libo Deng Lei Yao Haitao Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第16期110-117,共8页
Transition metal oxides as anode materials for high-performance lithium-ion batteries suffer from severe capacity decay,originating primarily from particle pulverization upon volume expansion/shrinkage and the intrins... Transition metal oxides as anode materials for high-performance lithium-ion batteries suffer from severe capacity decay,originating primarily from particle pulverization upon volume expansion/shrinkage and the intrinsically sluggish electron/ion transport.Herein,in-situ encapsulation ofα-Fe_(2)O_(3) nanoparticles into micro-sized ZnFe_(2)O_(4) capsules is facilely fulfilled through a co-precipitation process and followed by heat-treatment at optimal calcination temperature.The porous ZnFe_(2)O_(4) scaffold affords a synergistic confinement effect to suppress the grain growth ofα-Fe2 O3 nanocrystals during the calcination process and to accommodate the stress generated by volume expansion during the charge/discharge process,leading to an enhanced interfacial conductivity and inhibit electrode pulverization and mechanical failure in the active material.With these merits,the preparedα-Fe_(2)O_(3)/Fe_(2)O_(4) composite delivers prolonged cycling stability and improved rate capability with a higher specific capacity than soleα-Fe_(2)O_(3) and Fe_(2)O_(4).The discharge capacity is retained at 700 mAh g-1 after 500 cycles at 200 mA g^(-1) and 940 mAh g^(-1) after 50 cycles at 100 m A g^(-1).This work provides a new perspective in designing transition metal oxides for advanced lithium-ion batteries with superior electrochemical properties. 展开更多
关键词 α-Fe_(2)O_(3)/ZnFe_(2)O_(4)ceramic composite Co-precipitation process Confinement effect Interfacial effect Grain growth High conductivity Lithium-ion battery anodes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部