We present a well-posed and discretely stable perfectly matched layer for the anisotropic(and isotropic)elastic wave equations without first re-writing the governing equations as a first order system.The new model is ...We present a well-posed and discretely stable perfectly matched layer for the anisotropic(and isotropic)elastic wave equations without first re-writing the governing equations as a first order system.The new model is derived by the complex coordinate stretching technique.Using standard perturbation methods we show that complex frequency shift together with a chosen real scaling factor ensures the decay of eigen-modes for all relevant frequencies.To buttress the stability properties and the robustness of the proposed model,numerical experiments are presented for anisotropic elastic wave equations.The model is approximated with a stable node-centered finite difference scheme that is second order accurate both in time and space.展开更多
文摘We present a well-posed and discretely stable perfectly matched layer for the anisotropic(and isotropic)elastic wave equations without first re-writing the governing equations as a first order system.The new model is derived by the complex coordinate stretching technique.Using standard perturbation methods we show that complex frequency shift together with a chosen real scaling factor ensures the decay of eigen-modes for all relevant frequencies.To buttress the stability properties and the robustness of the proposed model,numerical experiments are presented for anisotropic elastic wave equations.The model is approximated with a stable node-centered finite difference scheme that is second order accurate both in time and space.