期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Leveraging Multimodal Ensemble Fusion-Based Deep Learning for COVID-19 on Chest Radiographs
1
作者 Mohamed Yacin Sikkandar K.Hemalatha +4 位作者 M.Subashree S.Srinivasan Seifedine Kadry Jungeun Kim keejun han 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期873-889,共17页
Recently,COVID-19 has posed a challenging threat to researchers,scientists,healthcare professionals,and administrations over the globe,from its diagnosis to its treatment.The researchers are making persistent efforts ... Recently,COVID-19 has posed a challenging threat to researchers,scientists,healthcare professionals,and administrations over the globe,from its diagnosis to its treatment.The researchers are making persistent efforts to derive probable solutions formanaging the pandemic in their areas.One of the widespread and effective ways to detect COVID-19 is to utilize radiological images comprising X-rays and computed tomography(CT)scans.At the same time,the recent advances in machine learning(ML)and deep learning(DL)models show promising results in medical imaging.Particularly,the convolutional neural network(CNN)model can be applied to identifying abnormalities on chest radiographs.While the epidemic of COVID-19,much research is led on processing the data compared with DL techniques,particularly CNN.This study develops an improved fruit fly optimization with a deep learning-enabled fusion(IFFO-DLEF)model for COVID-19 detection and classification.The major intention of the IFFO-DLEF model is to investigate the presence or absence of COVID-19.To do so,the presented IFFODLEF model applies image pre-processing at the initial stage.In addition,the ensemble of three DL models such as DenseNet169,EfficientNet,and ResNet50,are used for feature extraction.Moreover,the IFFO algorithm with a multilayer perceptron(MLP)classification model is utilized to identify and classify COVID-19.The parameter optimization of the MLP approach utilizing the IFFO technique helps in accomplishing enhanced classification performance.The experimental result analysis of the IFFO-DLEF model carried out on the CXR image database portrayed the better performance of the presented IFFO-DLEF model over recent approaches. 展开更多
关键词 COVID-19 computer vision deep learning image classification fusion model
在线阅读 下载PDF
Statistical Data Mining with Slime Mould Optimization for Intelligent Rainfall Classification
2
作者 Ramya Nemani G.Jose Moses +4 位作者 Fayadh Alenezi K.Vijaya Kumar Seifedine Kadry Jungeun Kim keejun han 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期919-935,共17页
Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance,medicine,science,engineering,and so on.Statistical data mining(SDM)is an interdisciplinary dom... Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance,medicine,science,engineering,and so on.Statistical data mining(SDM)is an interdisciplinary domain that examines huge existing databases to discover patterns and connections from the data.It varies in classical statistics on the size of datasets and on the detail that the data could not primarily be gathered based on some experimental strategy but conversely for other resolves.Thus,this paper introduces an effective statistical Data Mining for Intelligent Rainfall Prediction using Slime Mould Optimization with Deep Learning(SDMIRPSMODL)model.In the presented SDMIRP-SMODL model,the feature subset selection process is performed by the SMO algorithm,which in turn minimizes the computation complexity.For rainfall prediction.Convolution neural network with long short-term memory(CNN-LSTM)technique is exploited.At last,this study involves the pelican optimization algorithm(POA)as a hyperparameter optimizer.The experimental evaluation of the SDMIRP-SMODL approach is tested utilizing a rainfall dataset comprising 23682 samples in the negative class and 1865 samples in the positive class.The comparative outcomes reported the supremacy of the SDMIRP-SMODL model compared to existing techniques. 展开更多
关键词 Statistical data mining predictive models deep learning rainfall prediction parameter tuning
在线阅读 下载PDF
A Novel Framework for Learning and Classifying the Imbalanced Multi-Label Data
3
作者 P.K.A.Chitra S.Appavu alias Balamurugan +3 位作者 S.Geetha Seifedine Kadry Jungeun Kim keejun han 《Computer Systems Science & Engineering》 2024年第5期1367-1385,共19页
A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this wor... A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this work is to create a novel framework for learning and classifying imbalancedmulti-label data.This work proposes a framework of two phases.The imbalanced distribution of themulti-label dataset is addressed through the proposed Borderline MLSMOTE resampling method in phase 1.Later,an adaptive weighted l21 norm regularized(Elastic-net)multilabel logistic regression is used to predict unseen samples in phase 2.The proposed Borderline MLSMOTE resampling method focuses on samples with concurrent high labels in contrast to conventional MLSMOTE.The minority labels in these samples are called difficult minority labels and are more prone to penalize classification performance.The concurrentmeasure is considered borderline,and labels associated with samples are regarded as borderline labels in the decision boundary.In phase II,a novel adaptive l21 norm regularized weighted multi-label logistic regression is used to handle balanced data with different weighted synthetic samples.Experimentation on various benchmark datasets shows the outperformance of the proposed method and its powerful predictive performances over existing conventional state-of-the-art multi-label methods. 展开更多
关键词 Multi-label imbalanced data multi-label learning Borderline MLSMOTE concurrent multi-label adaptive weighted multi-label elastic net difficult minority label
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部