We proposes an AI-assisted framework for integrated natural disaster prevention and emergency response,leveraging the DeepSeek large language model(LLM)to advance intelligent decision-making in geohazard management.We...We proposes an AI-assisted framework for integrated natural disaster prevention and emergency response,leveraging the DeepSeek large language model(LLM)to advance intelligent decision-making in geohazard management.We systematically analyze the technical pathways for deploying LLMs in disaster scenarios,emphasizing three breakthrough directions:(1)knowledge graph-driven dynamic risk modeling,(2)reinforcement learning-optimized emergency decision systems,and(3)secure local deployment architectures.The DeepSeek model demonstrates unique advantages through its hybrid reasoning mechanism combining semantic analysis with geospatial pattern recognition,enabling cost-effective processing of multi-source data spanning historical disaster records,real-time IoT sensor feeds,and socio-environmental parameters.A modular system architecture is designed to achieve three critical objectives:(a)automated construction of domain-specific knowledge graphs through unsupervised learning of disaster physics relationships,(b)scenario-adaptive resource allocation using risk simulations,and(c)preserving emergency coordination via federated learning across distributed response nodes.The proposed local deployment paradigm addresses critical data security concerns in cross-border disaster management while complying with the FAIR principles(Findable,Accessible,Interoperable,Reusable)for geoscientific data governance.This work establishes a methodological foundation for next-generation AI-earth science convergence in disaster mitigation.展开更多
基金funded by the Chongqing Water Resources Bureau,China(Project No.CQS24C00836).
文摘We proposes an AI-assisted framework for integrated natural disaster prevention and emergency response,leveraging the DeepSeek large language model(LLM)to advance intelligent decision-making in geohazard management.We systematically analyze the technical pathways for deploying LLMs in disaster scenarios,emphasizing three breakthrough directions:(1)knowledge graph-driven dynamic risk modeling,(2)reinforcement learning-optimized emergency decision systems,and(3)secure local deployment architectures.The DeepSeek model demonstrates unique advantages through its hybrid reasoning mechanism combining semantic analysis with geospatial pattern recognition,enabling cost-effective processing of multi-source data spanning historical disaster records,real-time IoT sensor feeds,and socio-environmental parameters.A modular system architecture is designed to achieve three critical objectives:(a)automated construction of domain-specific knowledge graphs through unsupervised learning of disaster physics relationships,(b)scenario-adaptive resource allocation using risk simulations,and(c)preserving emergency coordination via federated learning across distributed response nodes.The proposed local deployment paradigm addresses critical data security concerns in cross-border disaster management while complying with the FAIR principles(Findable,Accessible,Interoperable,Reusable)for geoscientific data governance.This work establishes a methodological foundation for next-generation AI-earth science convergence in disaster mitigation.