Increasing evidence suggests that fine roots are particularly sensitive to environmental changes,making them essential in responding and adapting forest ecosystems to climate change.However,we still lack a fundamental...Increasing evidence suggests that fine roots are particularly sensitive to environmental changes,making them essential in responding and adapting forest ecosystems to climate change.However,we still lack a fundamental understanding of the underlying mechanisms that control fine root plasticity.The objective of this study was to determine the influence of soil moisture changes on fine root dynamics and morphology of European beech(Fagus sylvatica L.).We conducted a 30-month study of fine root traits,i.e.,fine root biomass(FRB),productivity,mortality,turnover,specific root length(SRL),specific root area(SRA),and root tip frequency(RTF),along a soil moisture gradient from dry,intermediate,and wet conditions in a near-natural mature beech forest.Sequential root coring with accompanying soil measurements was carried out at three study sites reflecting the gradient in soil water availability.For most fine root traits,we found significant differences between the upper 10 cm and lower soil depths.FRB showed significant differences between study sites,with the lowest FRB at the dry site.However,productivity,turnover,SRL,SRA,and RTF showed no significant differences between sites,but a high variability between seasons,suggesting an adaptation to short-term fluctuations but not to long-term gradients in soil water content(SWC).Linear mixed models revealed that decreasing SWC led to a significant increase in SRL,SRA,and RTF(standardized coefficients:-1.0±0.46,-1.1±0.46,and-1.1±0.43,respectively).Our observations indicate an adaptation strategy of beech to low availability of soil water and drought by forming thin absorptive roots and by maintaining a high seasonal plasticity to tolerate fluctuations in soil moisture.By highlighting the belowground morphological adaptations of mature forests to low soil water availability,our results provide novel insights into the structure and dynamics of forest ecosystem adaptations to climate change.展开更多
Natural clay minerals can play an important role in crude remediation of wastewater polluted with the heavy metals (HMs) Cu, Zn and Ni. The presence and timing of ddition of natural dissolved organic matter (DOM) ...Natural clay minerals can play an important role in crude remediation of wastewater polluted with the heavy metals (HMs) Cu, Zn and Ni. The presence and timing of ddition of natural dissolved organic matter (DOM) have a significant effect on the HM removal by clay mineral sorbents. However, the influence of the presence of DOM on the remediation of the used clay mineral sorbents once saturated with HMs is largely unknown. To resolve this, clay mineral-rich soil column of varying composition, loaded (i) with Cu, Zn and Ni only, (ii) first with DOM followed by Cu, Zn and Ni, or (iii) with DOM, Cu, Zn and Ni simultaneously, was used in a set of desorption experiments. The soil columns were leached with 0.001 mol L-1 CaCI2 dissolved in water as control eluent and 0.001 tool L-1 CaC12 dissolved in DOM as treatment eluent. During the preceding loading phase of the sorbent, the timing of DOM addition (sequential or concurrent with HMs) was found to have a significant influence on the subsequent removal of the HMs. In particular when the column was loaded with DOM and HMs simultaneously, largely irreversible co-precipitation took place. Our results indicate that the regeneration potential of clay mineral sorbents in wastewater treatment will be significantly reduced when the treated water is rich in DOM. In contrast, in manured agricultural fields (where HMs enter together with DOM), HM mobility will be lower than expected from interaction dynamics of HMs and clay minerals.展开更多
基金supported by the Federal Ministry of Food and Agriculture(BMEL)and the Federal Ministry for the Environment,Nature Conservation,Nuclear Safety and Consumer Protection(BMUV)through the Fachagentur Nachwachsende Rohstoffe e.V.(FNR)(grant no.2218 WK53X4).
文摘Increasing evidence suggests that fine roots are particularly sensitive to environmental changes,making them essential in responding and adapting forest ecosystems to climate change.However,we still lack a fundamental understanding of the underlying mechanisms that control fine root plasticity.The objective of this study was to determine the influence of soil moisture changes on fine root dynamics and morphology of European beech(Fagus sylvatica L.).We conducted a 30-month study of fine root traits,i.e.,fine root biomass(FRB),productivity,mortality,turnover,specific root length(SRL),specific root area(SRA),and root tip frequency(RTF),along a soil moisture gradient from dry,intermediate,and wet conditions in a near-natural mature beech forest.Sequential root coring with accompanying soil measurements was carried out at three study sites reflecting the gradient in soil water availability.For most fine root traits,we found significant differences between the upper 10 cm and lower soil depths.FRB showed significant differences between study sites,with the lowest FRB at the dry site.However,productivity,turnover,SRL,SRA,and RTF showed no significant differences between sites,but a high variability between seasons,suggesting an adaptation to short-term fluctuations but not to long-term gradients in soil water content(SWC).Linear mixed models revealed that decreasing SWC led to a significant increase in SRL,SRA,and RTF(standardized coefficients:-1.0±0.46,-1.1±0.46,and-1.1±0.43,respectively).Our observations indicate an adaptation strategy of beech to low availability of soil water and drought by forming thin absorptive roots and by maintaining a high seasonal plasticity to tolerate fluctuations in soil moisture.By highlighting the belowground morphological adaptations of mature forests to low soil water availability,our results provide novel insights into the structure and dynamics of forest ecosystem adaptations to climate change.
基金supported by a scholarship from the Faculty of Science, University of Amsterdam, The Netherlands
文摘Natural clay minerals can play an important role in crude remediation of wastewater polluted with the heavy metals (HMs) Cu, Zn and Ni. The presence and timing of ddition of natural dissolved organic matter (DOM) have a significant effect on the HM removal by clay mineral sorbents. However, the influence of the presence of DOM on the remediation of the used clay mineral sorbents once saturated with HMs is largely unknown. To resolve this, clay mineral-rich soil column of varying composition, loaded (i) with Cu, Zn and Ni only, (ii) first with DOM followed by Cu, Zn and Ni, or (iii) with DOM, Cu, Zn and Ni simultaneously, was used in a set of desorption experiments. The soil columns were leached with 0.001 mol L-1 CaCI2 dissolved in water as control eluent and 0.001 tool L-1 CaC12 dissolved in DOM as treatment eluent. During the preceding loading phase of the sorbent, the timing of DOM addition (sequential or concurrent with HMs) was found to have a significant influence on the subsequent removal of the HMs. In particular when the column was loaded with DOM and HMs simultaneously, largely irreversible co-precipitation took place. Our results indicate that the regeneration potential of clay mineral sorbents in wastewater treatment will be significantly reduced when the treated water is rich in DOM. In contrast, in manured agricultural fields (where HMs enter together with DOM), HM mobility will be lower than expected from interaction dynamics of HMs and clay minerals.