Commercial A356 alloy was refined with a homemade A1-5Ti-0.25C-2RE master alloy, and the microstructure and macrostructure of the refined alloy were investigated. The results show that the grain refining effect of A35...Commercial A356 alloy was refined with a homemade A1-5Ti-0.25C-2RE master alloy, and the microstructure and macrostructure of the refined alloy were investigated. The results show that the grain refining effect of A356 is poor by the addition level of 0.5 wt% master alloy, but when the level reaches 3.0 wt% the grain can get a satisfactory refining effect. Dendrite of A356 can be effectively refined by addition of 0.5 wt% master alloy; however, the refining effect is not significantly improved by further increasing the addition of master alloy. Grain and dendrite refining effects are compared in this article, and the results show that the grain and dendrite exhibit different refining effects with the same addition level of master alloy. Dendrite is easier to reach the optimal refining effect than grain.展开更多
The quantitative phase-field simulations were reviewed on the processes of solidification of pure metals and alloys.The quantitative phase-field equations were treated in a diffuse thin-interface limit,which enabled t...The quantitative phase-field simulations were reviewed on the processes of solidification of pure metals and alloys.The quantitative phase-field equations were treated in a diffuse thin-interface limit,which enabled the quantitative links between interface dynamics and model parameters in the quasi-equilibrium simulations.As a result,the quantitative modeling is more effective in dealing with microstructural pattern formation in the large scale simulations without any spurious kinetic effects.The development of the quantitative phase-field models in modeling the formation of microstructures such as dendritic structures,eutectic lamellas,seaweed morphologies,and grain boundaries in different solidified conditions was also reviewed with the purpose of guiding to find the new prospect of applications in the quantitative phase-field simulations.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51174177)
文摘Commercial A356 alloy was refined with a homemade A1-5Ti-0.25C-2RE master alloy, and the microstructure and macrostructure of the refined alloy were investigated. The results show that the grain refining effect of A356 is poor by the addition level of 0.5 wt% master alloy, but when the level reaches 3.0 wt% the grain can get a satisfactory refining effect. Dendrite of A356 can be effectively refined by addition of 0.5 wt% master alloy; however, the refining effect is not significantly improved by further increasing the addition of master alloy. Grain and dendrite refining effects are compared in this article, and the results show that the grain and dendrite exhibit different refining effects with the same addition level of master alloy. Dendrite is easier to reach the optimal refining effect than grain.
基金supported by National Natural Science Foundation of China(No.51174177)the Fund of the State Key Solidification Laboratory of Solidification Processing in Northwestern Polytechnical University(No.SKLSP 201714)
文摘The quantitative phase-field simulations were reviewed on the processes of solidification of pure metals and alloys.The quantitative phase-field equations were treated in a diffuse thin-interface limit,which enabled the quantitative links between interface dynamics and model parameters in the quasi-equilibrium simulations.As a result,the quantitative modeling is more effective in dealing with microstructural pattern formation in the large scale simulations without any spurious kinetic effects.The development of the quantitative phase-field models in modeling the formation of microstructures such as dendritic structures,eutectic lamellas,seaweed morphologies,and grain boundaries in different solidified conditions was also reviewed with the purpose of guiding to find the new prospect of applications in the quantitative phase-field simulations.