Structural materials usually suffer from several attacks during their service,such as tension,fatigue and corrosion.It is necessary to synchronously improve these properties for their lightweight and longlifetime,but ...Structural materials usually suffer from several attacks during their service,such as tension,fatigue and corrosion.It is necessary to synchronously improve these properties for their lightweight and longlifetime,but corrosion resistance and ductility are generally inverse correlation with strength,it is very difficult to simultaneously optimize all three properties.However,bulk nanocrystalline 304 stainless steel(BN-304SS)produced by severe rolling technology possessed the larger yield and ultimate tensile strengths with sufficient elongation(>40%)during tensile test,the larger saturation stress and longer lifetime during low-cycle fatigue,the enhanced uniform and pitting corrosion resistances during fiveday immersion test in 6 mol/L HCl,the lowered stress corrosion cracking(SCC)susceptibility with larger yield(~2.40 GPa)and ultimate tensile(~2.66 GPa)strengths,and enough elongation(>30%)during stress corrosion in comparison with conventional polycrystalline 304 stainless steel(CP-304 SS)counterpart.The uniform and pitting corrosion resistances of fractured BN-304SS were enhanced in comprsion with those of fractured CP-304 SS during seven-day immersion test in 1 mol/L HCl.These results demonstrated the strengths,ductility and corrosion resistances of BN-304SS can be simultaneously optimized by severe rolling technology.These improved results of BN-304SS in different disciplines were understood by its valence electron configurations rather than traditional microstructural parameters.展开更多
The localized and uniform corrosion resistances of bulk nanocrystalline 304 stainless steel(NC-304 SS)produced by severe rolling technique, and its conventional polycrystalline 304 stainless steel(CC-304 SS)counte...The localized and uniform corrosion resistances of bulk nanocrystalline 304 stainless steel(NC-304 SS)produced by severe rolling technique, and its conventional polycrystalline 304 stainless steel(CC-304 SS)counterpart, were investigated in high-concentration hydrochloric acid solutions at room temperature.NC-304 SS can scarcely suffer from localized corrosion in 4 mol/L and 5 mol/L HCl solutions during 5-day immersion tests, and in 1-3 mol/L HCl solutions during thirty-five-day immersion tests. The corrosion rate of NC-304 SS was also less than that of CC-304 SS during these immersion tests. The improved localized and uniform corrosion resistances of NC-304 SS were explained in terms of the adsorption and chemical activity of Cl;on NC-304 SS and CC-304 SS characterized by X-ray photoelectron spectroscopy,and the valence electron configurations of NC-304 SS and CC-304 SS were characterized by ultra-violet photoelectron spectroscopy rather than conventional electrochemical results.展开更多
基金the financial support of National Natural Sciences of Foundation of China(Contract No.51171199)the cooperation project from Pujiang,Chengdu,Sichuan Province,China,No.Y5N4811181.
文摘Structural materials usually suffer from several attacks during their service,such as tension,fatigue and corrosion.It is necessary to synchronously improve these properties for their lightweight and longlifetime,but corrosion resistance and ductility are generally inverse correlation with strength,it is very difficult to simultaneously optimize all three properties.However,bulk nanocrystalline 304 stainless steel(BN-304SS)produced by severe rolling technology possessed the larger yield and ultimate tensile strengths with sufficient elongation(>40%)during tensile test,the larger saturation stress and longer lifetime during low-cycle fatigue,the enhanced uniform and pitting corrosion resistances during fiveday immersion test in 6 mol/L HCl,the lowered stress corrosion cracking(SCC)susceptibility with larger yield(~2.40 GPa)and ultimate tensile(~2.66 GPa)strengths,and enough elongation(>30%)during stress corrosion in comparison with conventional polycrystalline 304 stainless steel(CP-304 SS)counterpart.The uniform and pitting corrosion resistances of fractured BN-304SS were enhanced in comprsion with those of fractured CP-304 SS during seven-day immersion test in 1 mol/L HCl.These results demonstrated the strengths,ductility and corrosion resistances of BN-304SS can be simultaneously optimized by severe rolling technology.These improved results of BN-304SS in different disciplines were understood by its valence electron configurations rather than traditional microstructural parameters.
基金financially supported by the National Natural Sciences Foundation of China(No.51171199)the State key Project of Research and Development of China(No.2017YFA0206302)
文摘The localized and uniform corrosion resistances of bulk nanocrystalline 304 stainless steel(NC-304 SS)produced by severe rolling technique, and its conventional polycrystalline 304 stainless steel(CC-304 SS)counterpart, were investigated in high-concentration hydrochloric acid solutions at room temperature.NC-304 SS can scarcely suffer from localized corrosion in 4 mol/L and 5 mol/L HCl solutions during 5-day immersion tests, and in 1-3 mol/L HCl solutions during thirty-five-day immersion tests. The corrosion rate of NC-304 SS was also less than that of CC-304 SS during these immersion tests. The improved localized and uniform corrosion resistances of NC-304 SS were explained in terms of the adsorption and chemical activity of Cl;on NC-304 SS and CC-304 SS characterized by X-ray photoelectron spectroscopy,and the valence electron configurations of NC-304 SS and CC-304 SS were characterized by ultra-violet photoelectron spectroscopy rather than conventional electrochemical results.