期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
不同构形群桩的动力反应
1
作者 G.Gazetas k.fan +1 位作者 A.Kaynia 徐晶 《世界地震工程》 CSCD 1994年第4期55-60,共6页
一、前言 土—桩—基础—结构系统的地震相互作用分析可以按下列三步依次进行: (1)求不计上部结构惯性的基础运动。这一所谓的基础输入运动包括平移分量和旋转分量; (2)确定桩帽平移、旋转和平移旋转耦合振动的动力阻抗函数(弹簧、阻尼... 一、前言 土—桩—基础—结构系统的地震相互作用分析可以按下列三步依次进行: (1)求不计上部结构惯性的基础运动。这一所谓的基础输入运动包括平移分量和旋转分量; (2)确定桩帽平移、旋转和平移旋转耦合振动的动力阻抗函数(弹簧、阻尼器); (3)计算支承在上述弹簧、阻尼器上的上部结构的地震反应,其基底输入为由第一步所获得的基础运动。 对于上述分析的每一步骤,都已提出了多种可供选择的计算方法。 展开更多
关键词 桩基础 群桩 动力反应
在线阅读 下载PDF
Treatment of in stent coronary restenosis with excimer laser angioplasty
2
作者 Meilin Liu W.H.Chow +4 位作者 O.H.Kwok M.H.Jim A.Yip k.fan E.Chan 《Chinese Medical Journal》 SCIE CAS CSCD 2000年第1期14-17,共4页
OBJECTIVE: To evaluate the efficacy and safety of excimer laser coronary angioplasty (ELCA) with adjunctive balloon angioplasty in patient with in-stent restenosis. METHODS: ELCA was performed in 20 patients of insten... OBJECTIVE: To evaluate the efficacy and safety of excimer laser coronary angioplasty (ELCA) with adjunctive balloon angioplasty in patient with in-stent restenosis. METHODS: ELCA was performed in 20 patients of instent restenosis. All patients were symptomatic and had class III-IV angina. ELCA was performed with the Spectranetics CVX-300 System. The laser catheter of Vittesse C (concentric) and E (eccentric) with diameter of 1.4-2.0 mm was used. RESULTS: Laser catheter crossed all stenotic stents without difficulty. The lesion length was 4.6-51.2 mm, mean 20.7 +/- 13.7 mm, including 14 lesions > 10 mm. Laser treatment alone increased minimal lumen diameter (MLD) from 0.3 +/- 0.3 mm to 1.4 +/- 0.3 mm (P 展开更多
关键词 Angioplasty Balloon Laser-Assisted STENTS Aged Aged 80 and over Angioplasty Transluminal Percutaneous Coronary Coronary Restenosis FEMALE Humans Male Middle Aged
原文传递
Line-of-shower trigger method to lower energy threshold for GRB detection using LHAASO-WCDA
3
作者 F.Aharonian Q.An +257 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao Z.Cao J.Chang J.F.Chang X.C.Chan B.M.Chen J.Chen L.Chen L.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Chen Y.D.Chen S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu D.della Volpe B.D’Ettorre Piazzoli X.J.Don J.H.Fan Y.Z.Fan Z.X.Fan J.Fang k.fan C.F.Feng L.Feng S.H.Fen Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Gen G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huan W.H.Huang X.T.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi D.Ruffolo V.Rulev A.Sáiz L.Shao O.Shchegolev X.D.Shen J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wan C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wan R.N.Wang W.Wang W.Wang X.G.Wang X.J.Wan X.Y.Wang Y.D.Wan Y.J.Wan Y.P.Wang Z.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yan R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.Zhang L.X.Zhang P.F.Zhang P.P.Zhang R.Zhang S.R.Zhang S.S.Zhan X.Zhang X.P.Zhan Y.Zhan Y.Zhang Y.F.Zhang Y.L.Zhan B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou P.Zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo The LHAASO Collaboration 《Radiation Detection Technology and Methods》 CSCD 2021年第4期531-541,共11页
Purpose Observation of high energy and very high emission from Gamma Ray Bursts(GRBs)is crucial to study the gigantic explosion and the underline processes.With a large field-of-view and almost full duty cycle,the Wat... Purpose Observation of high energy and very high emission from Gamma Ray Bursts(GRBs)is crucial to study the gigantic explosion and the underline processes.With a large field-of-view and almost full duty cycle,the Water Cherenkov Detector Array(WCDA),a sub-array of the Large High Altitude Air Shower Observatory(LHAASO),is appropriate to monitor the very high energy emission from unpredictable transients such as GRBs.Method Nevertheless,the main issue for an extensive air shower array is the high energy threshold which limits the horizon of the detector.To address this issue a new trigger method is developed in this article to lower the energy threshold of WCDA for GRB observation.Result The proposed method significantly improves the detection efficiency of WCDA for gamma-rays around the GRB direction at 10-300 GeV.The sensitivity of the WCDA for GRB detection with the new trigger method is estimated.The achieved sensitivity of the quarter WCDA array above 10 GeV is comparable with that of Fermi-LAT.The data analysis process and corresponding fluence upper limit for GRB 190719C is presented as an example. 展开更多
关键词 LHAASO WCDA GRB
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部