ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensit...ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.展开更多
Diagnosing the evolution of laser-generated high energy density(HED)systems is fundamental to develop a correct understanding of the behavior of matter under extreme conditions.Talbot–Lau interferometry constitutes a...Diagnosing the evolution of laser-generated high energy density(HED)systems is fundamental to develop a correct understanding of the behavior of matter under extreme conditions.Talbot–Lau interferometry constitutes a promising tool,since it permits simultaneous single-shot X-ray radiography and phase-contrast imaging of dense plasmas.We present the results of an experiment at OMEGA EP that aims to probe the ablation front of a laser-irradiated foil using a Talbot–Lau X-ray interferometer.A polystyrene(CH)foil was irradiated by a laser of 133 J,1 ns and probed with 8 keV laser-produced backlighter radiation from Cu foils driven by a short-pulse laser(153 J,11 ps).The ablation front interferograms were processed in combination with a set of reference images obtained ex situ using phase-stepping.We managed to obtain attenuation and phase-shift images of a laser-irradiated foil for electron densities above 1022 cm−3.These results showcase the capabilities of Talbot–Lau X-ray diagnostic methods to diagnose HED laser-generated plasmas through high-resolution imaging.展开更多
基金The authors acknowledge support from the project ELI:Extreme Light Infrastructure from European Regional Devel-opment(CZ.02.1.01/0.0/0.0/15-008/0000162)Also supported by the project High Field Initiative(CZ.02.1.01/0.0/0.0/15-003/0000449)from European Regional Development Fund.
文摘ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.
基金supported by the National Nuclear Security Administration (DENA0003882)funding from the Conseil Règional Aquitaine (INTALAX)+1 种基金the Agence Nationale de la Recherche (ANR-10-IDEX-03-02, ANR-15CE30-0011)supported by Research Grant No. PID2019-108764RB-I00 from the Spanish Ministry of Science and Innovation
文摘Diagnosing the evolution of laser-generated high energy density(HED)systems is fundamental to develop a correct understanding of the behavior of matter under extreme conditions.Talbot–Lau interferometry constitutes a promising tool,since it permits simultaneous single-shot X-ray radiography and phase-contrast imaging of dense plasmas.We present the results of an experiment at OMEGA EP that aims to probe the ablation front of a laser-irradiated foil using a Talbot–Lau X-ray interferometer.A polystyrene(CH)foil was irradiated by a laser of 133 J,1 ns and probed with 8 keV laser-produced backlighter radiation from Cu foils driven by a short-pulse laser(153 J,11 ps).The ablation front interferograms were processed in combination with a set of reference images obtained ex situ using phase-stepping.We managed to obtain attenuation and phase-shift images of a laser-irradiated foil for electron densities above 1022 cm−3.These results showcase the capabilities of Talbot–Lau X-ray diagnostic methods to diagnose HED laser-generated plasmas through high-resolution imaging.