Locoregional recurrence and distant metastasis of breast cancer still pose a significant risk for patients’survival.To address the clinical challenge,functional absorbable sponges(HA-SH/PP-Dox/Lap/COL I(HCNPs))were c...Locoregional recurrence and distant metastasis of breast cancer still pose a significant risk for patients’survival.To address the clinical challenge,functional absorbable sponges(HA-SH/PP-Dox/Lap/COL I(HCNPs))were constructed by biomimetic extracellular matrix of collagen I/hyaluronic acid complex conjugated with doxorubicin/lapatinib(Dox/Lap)-loaded nanoparticles.The HCNPs sponge exhibited excellent clotting ability and blood absorption rate.Worthily,Dox/Lap-loaded nanoparticles were synchronously endowed with a large number of oligo hyaluronic acid segments after degradation,which thus enhanced the ability of targeting into CD44-overexpressed tumor cells.The implantable HCNPs sponge in resected cavity of postoperative 4T1 models inhibited the spread of scattered tumor cells by absorbing the inevitable bleeding.More importantly,CD44 targeted nanoparticle with suitable Dox/Lap proportion continuously released from sponge to kill tumor cells of surrounding HCNPs and those remaining at surgical margin,thus prevented local recurrence as well as distant metastasis.Therefore,the functional HCNPs sponge might provide a safer and more effective strategy for postoperative treatment of cancer.展开更多
基金sponsored by the National Natural Science Foundation of China(Nos.51973136 and 32071352)the Open Project Program of the Third Affiliated Hospital of Xinxiang Medical University(No.KFKTZD202102).
文摘Locoregional recurrence and distant metastasis of breast cancer still pose a significant risk for patients’survival.To address the clinical challenge,functional absorbable sponges(HA-SH/PP-Dox/Lap/COL I(HCNPs))were constructed by biomimetic extracellular matrix of collagen I/hyaluronic acid complex conjugated with doxorubicin/lapatinib(Dox/Lap)-loaded nanoparticles.The HCNPs sponge exhibited excellent clotting ability and blood absorption rate.Worthily,Dox/Lap-loaded nanoparticles were synchronously endowed with a large number of oligo hyaluronic acid segments after degradation,which thus enhanced the ability of targeting into CD44-overexpressed tumor cells.The implantable HCNPs sponge in resected cavity of postoperative 4T1 models inhibited the spread of scattered tumor cells by absorbing the inevitable bleeding.More importantly,CD44 targeted nanoparticle with suitable Dox/Lap proportion continuously released from sponge to kill tumor cells of surrounding HCNPs and those remaining at surgical margin,thus prevented local recurrence as well as distant metastasis.Therefore,the functional HCNPs sponge might provide a safer and more effective strategy for postoperative treatment of cancer.