The unique structure of signed networks,characterized by positive and negative edges,poses significant challenges for analyzing network topology.In recent years,various statistical algorithms have been developed to ad...The unique structure of signed networks,characterized by positive and negative edges,poses significant challenges for analyzing network topology.In recent years,various statistical algorithms have been developed to address this issue.However,there remains a lack of a unified framework to uncover the nontrivial properties inherent in signed network structures.To support developers,researchers,and practitioners in this field,we introduce a Python library named SNSAlib(Signed Network Structure Analysis),specifically designed to meet these analytical requirements.This library encompasses empirical signed network datasets,signed null model algorithms,signed statistics algorithms,and evaluation indicators.The primary objective of SNSAlib is to facilitate the systematic analysis of micro-and meso-structure features within signed networks,including node popularity,clustering,assortativity,embeddedness,and community structure by employing more accurate signed null models.Ultimately,it provides a robust paradigm for structure analysis of signed networks that enhances our understanding and application of signed networks.展开更多
Hypoperfusion and hyperperfusion could be causes of early postoperative complications that lead to neurological deterioration in patients with moyamoya diseases (MMD) after superficial temporal artery (STA) and middle...Hypoperfusion and hyperperfusion could be causes of early postoperative complications that lead to neurological deterioration in patients with moyamoya diseases (MMD) after superficial temporal artery (STA) and middle cerebral artery (MCA) anastomosis. Here, the authors described a case of child-onset bilateral MMD that manifested transient cerebral ischemia in the contralateral hemisphere after left STA-MCA bypass in young adulthood. A new onset of cerebral ischemia in the contralateral hemisphere and transient neurological deterioration suggested the fragile hemodynamics of MMD during early perioperative period. Serial evaluation of postoperative cerebral hemodynamics and perfusion might facilitate targeted management in patients with unstable or advanced MMD.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.72371031,62173065,62476045)Fundamental Research Funds for the Central Universities(Grant No.124330008)。
文摘The unique structure of signed networks,characterized by positive and negative edges,poses significant challenges for analyzing network topology.In recent years,various statistical algorithms have been developed to address this issue.However,there remains a lack of a unified framework to uncover the nontrivial properties inherent in signed network structures.To support developers,researchers,and practitioners in this field,we introduce a Python library named SNSAlib(Signed Network Structure Analysis),specifically designed to meet these analytical requirements.This library encompasses empirical signed network datasets,signed null model algorithms,signed statistics algorithms,and evaluation indicators.The primary objective of SNSAlib is to facilitate the systematic analysis of micro-and meso-structure features within signed networks,including node popularity,clustering,assortativity,embeddedness,and community structure by employing more accurate signed null models.Ultimately,it provides a robust paradigm for structure analysis of signed networks that enhances our understanding and application of signed networks.
基金the Ministry of Science and Technology of China,National Key Technology Research and Development Program(2015BAI12B04,2013BAI09B03)Beijing Institute for Brain Disorders grant(BIBD-PXM2013_014226_07_000084)+1 种基金National Natural Science Foundation of China(H090681271313 and H090681571110 to Y.L.Zhao and 81500995 to X.L.Chen)China Scholarship Council(201508110252 to L.Ma).
文摘Hypoperfusion and hyperperfusion could be causes of early postoperative complications that lead to neurological deterioration in patients with moyamoya diseases (MMD) after superficial temporal artery (STA) and middle cerebral artery (MCA) anastomosis. Here, the authors described a case of child-onset bilateral MMD that manifested transient cerebral ischemia in the contralateral hemisphere after left STA-MCA bypass in young adulthood. A new onset of cerebral ischemia in the contralateral hemisphere and transient neurological deterioration suggested the fragile hemodynamics of MMD during early perioperative period. Serial evaluation of postoperative cerebral hemodynamics and perfusion might facilitate targeted management in patients with unstable or advanced MMD.