Excessive osteoclastogenesis-mediated osteoporosis has been recognized as a global health concern.Candidate compounds derived from medicinal plants or functional foods are promising to treat osteoporosis due to their ...Excessive osteoclastogenesis-mediated osteoporosis has been recognized as a global health concern.Candidate compounds derived from medicinal plants or functional foods are promising to treat osteoporosis due to their high safety and efficiency.(−)-Epigallocatechin-3-gallate(EGCG)is the most abundant and biologically active polyphenol in green tea.It can inhibit osteoclastogenesis in vitro by blocking receptor activator of nuclear factor(NF)-κB(RANK)signaling pathways.This study used the ovariectomized(OVX)mouse model to estimate the therapeutic effect of EGCG on osteoporosis and verified the molecular mechanism in vivo.The results revealed that EGCG significantly inhibited the OVX-induced body weight gain.Moreover,no adverse effects were observed on blood glucose,histomorphological features,weights,as well as indices of liver and kidney in OVX mice.EGCG could significantly ameliorate bone loss in OVX mice by inhibiting osteoclastogenesis.This effect was evidenced by the reduced number of osteoclasts and the increased trabecular bone area in the femurs.Moreover,EGCG inhibited the activities of c-telopeptide of type I collagen(CTX-I)and tartrate-resistant acid phosphatase 5b(TRACP-5b)and strengthened bone gla protein(BGP)and procollagen I N-terminal peptide(PINP)activities in OVX mice.Mechanistically,EGCG significantly downregulated the expression of osteoclastogenesis-related marker genes and proteins,including nuclear factor of activated T cells,cytoplasmic 1(NFATc1),c-Fos,tartrate-resistant acid phosphatase(TRAP),c-Src,and cathepsin K.In addition,the phosphorylation levels of p65,c-Jun N-terminal kinase(JNK),extracellular signal-regulated kinase 1/2(ERK1/2),p38,and protein kinase B(AKT)were significantly suppressed in OVX mice.It was found that EGCG could alleviate OVX-induced bone loss in mice by suppressing osteoclastogenesis by blocking the NF-κB,mitogen-activated protein kinase(MAPK),and AKT signaling pathways.EGCG has the potential to prevent and treat osteoclast-related diseases such as osteoporosis.展开更多
BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are ne...BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.展开更多
Steroidal alkaloids are the main active components in many medicinal plants and exhibit diverse biological activities.Axillaridine A(AA)is a newly discovered steroidal alkaloid.However,whether AA could suppress osteoc...Steroidal alkaloids are the main active components in many medicinal plants and exhibit diverse biological activities.Axillaridine A(AA)is a newly discovered steroidal alkaloid.However,whether AA could suppress osteoclastogenesis and alleviate ovariectomy-induced bone loss in mice remains unknown.In vitro,AA significantly suppressed the receptor activator of nuclear factor-κB(NF-κB)ligand(RANKL)-induced osteoclast differentiation via downregulating the expression of osteoclastogenesis-related marker genes,proteins,and transcriptional regulators,including tartrate-resistant acid phosphatase(TRAP),c-Src,matrix metallopeptidase-9(MMP-9),cathepsin K,nuclear factor of activated T cells,cytoplasmic 1(NFATc1),and c-Fos.This was achieved by blocking RANKL-RANK interaction and inhibiting RANKL-mediated RANK signaling pathways,including NF-κB,AKT,and mitogen-activated protein kinases(MAPKs)in osteoclast precursors.In vivo,AA significantly inhibited the ovariectomized(OVX)-induced body weight gain and blood glucose increase in mice.AA did not adversely affect the histomorphologies,weights,and indices of the kidney and liver in OVX mice.AA effectively ameliorated bone loss in OVX mice by inhibiting osteoclastogenesis.AA significantly inhibited the serum levels of tartrate-resistant acid phosphatase 5b(TRACP-5b)and C-telopeptide of type I collagen(CTX-I).AA significantly inhibited the OVX-induced expression of osteoclastogenesis-related marker genes and proteins in the femur.In summary,AA alleviates ovariectomy-induced bone loss in mice by suppressing osteoclastogenesis via inhibition of RANKL-mediated RANK signaling pathways and could be potentially used for the prevention and treatment of osteoclastrelated diseases such as osteoporosis.展开更多
People living long-term in areas with UV will cause premature photoaging.An abnormal reduction in autophagy is a key feature of photoaging,and p38 MAPK has been regarded as a key regulator of autophagy.Isothiocyanate ...People living long-term in areas with UV will cause premature photoaging.An abnormal reduction in autophagy is a key feature of photoaging,and p38 MAPK has been regarded as a key regulator of autophagy.Isothiocyanate is one of the main active components of Moringa oleifera Lam.seeds.Studies have reported that M.oleifera Lam.seeds iso thiocyanate(MITC)has anticancer,anti-inflammatory,cardio metabolic repair,nervous system protection,blood lipid regulation and diabetes prevention properties.However,the molecular mechanisms of MITC with protective effects against skin photoaging have not been studied thus far.In this study,we aimed to evaluate the antiphotoaging activity of MITC and to investigate the effect of p38 MAPK-dependent autophagy in vivo and in vitro models of photoaging.In this research we found that MITC can reverse the intracellular reactive oxygen species(ROS)content and inhibit the activation of p38 MAPK to improve the autophagy level,reduce the expression of matrix metalloproteinases(MMPs),and finally protect against photoaging by UV.Our results will uncover the molecular mechanisms of MITC that play a role in the protective effects against skin photoaging,provide helpful information for developing MITC as an anti-photoaging plant material and improve the utilization of M.oleifera Lam.seeds.展开更多
Moringa oleifera have laxative effects,but their active compositions and mechanisms are not very clear thus far.To this end,we systematically explored the active components and mechanism of M.oleifera leaves in reliev...Moringa oleifera have laxative effects,but their active compositions and mechanisms are not very clear thus far.To this end,we systematically explored the active components and mechanism of M.oleifera leaves in relieving constipation by using the slow transit constipation(STC)mouse model and network pharmacology.The results of animal experiments showed that M.oleifera aqueous extract(MOA)had good laxative activity,and its 70%alcohol soluble part(ASP)also showed significant laxative activity(P<0.01).Network pharmacological prediction results suggested that L-phenylalanine(Phe)was the key compound of ASP,and it might relieve constipation through tachykinin receptor 1(TACR1)and three kinds of adrenergic receptors,includingα_(1A)(ADRA1A),α_(2A)(ADRA2A),andα_(2B)(ADRA2B).Further animal experiment results showed that Phe significantly promoted gastrointestinal motility.Phe may relieve STC by enhancing the release of substance P(SP)and upregulating the m RNA expression of TACR1 in the ileum.Importantly,Phe may also promote intestinal movement by downregulating the m RNA expression of ADRA2A and ADRA2B and upregulating the m RNA expression of Calm and the m RNA and protein expression of myosin light chain 9 in the ileum,thereby activating the G protein-coupled receptor-myosin light chain signaling pathway.These results lay a foundation for the application of M.oleifera and Phe in constipation.展开更多
Moringa oleifera Lam.is a Moringa genus in the Moringaceae family that is high in nutrients and has a wide range of applications.Phenolic compounds are widely found in plants and have various health benefits for the h...Moringa oleifera Lam.is a Moringa genus in the Moringaceae family that is high in nutrients and has a wide range of applications.Phenolic compounds are widely found in plants and have various health benefits for the human body.With its high content and wide variety of phenolic compounds,M.oleifera Lam.has been widely studied for its health benefits.The phenolic compounds in M.oleifera Lam.(MOPCs)can be a potential source of functional food ingredients in pharmaceutical and industrial applications.Numerous studies have shown that MOPCs have antioxidant,anti-obesity,anti-diabetic,and antibacterial effects.Although the research on MOPCs has been gradually increasing,the extraction,isolation,identification,biological activities,and comprehensive application of MOPCs need a more systematic summary and generalization.Therefore,this paper reviews the isolation and extraction methods,structure identification,biological activities,and comprehensive applications to provide a further reference for the research and application of MOPCs.展开更多
Obesity has brought great challenges to global human health,and how to effectively prevent and control the occurrence and development of obesity has become an urgent problem.The role and mechanism of 4-[(α-Lrhamnosyl...Obesity has brought great challenges to global human health,and how to effectively prevent and control the occurrence and development of obesity has become an urgent problem.The role and mechanism of 4-[(α-Lrhamnosyloxy)benzyl]isothiocyanate(MITC),an active ingredient of Moringa oleifera Lam.,in the regulation of lipid metabolism have not been comprehensively investigated.In the present study,we investigated the mechanism of MITC in inhibiting lipid accumulation in mice fed with a high-fat diet(HFD)in terms of both lipolysis and central appetite regulation mediated by the gut microbe-gut-brain axis.MITC enhanced the characteristic indices associated with HFD mice and also promoted adipocytolysis and brown fat thermogenesis.Moreover,MITC was observed to improve leptin resistance,modulate the composition of gut microbiota such as Ruminococcaceae,Parasutterella,and Acetatifactor,promote 5-hydroxytryptamine secretion,further enhance the secretion of glucagon-like peptide-1(GLP-1)and peptide tyrosine-tyrosine(PYY)to activate peroxisome proliferator-activated receptor(PPAR)signaling in the hypothalamus,and modulate feeding behavior to inhibit lipid accumulation in HFD mice.These data suggest that MITC supplementation can help to alleviate obesity or obesity-related diseases.展开更多
Tumor necrosis factor-α(TNF-α)is a key player in the pathogenesis of rheumatoid arthritis(RA)and considered a promising target for therapeutic drug development.Activation of the nuclear factor-kappa B(NF-κB)pathway...Tumor necrosis factor-α(TNF-α)is a key player in the pathogenesis of rheumatoid arthritis(RA)and considered a promising target for therapeutic drug development.Activation of the nuclear factor-kappa B(NF-κB)pathway upon TNF-αbinding to its receptor is crucial for progression of RA.Stephanine(SA),an isoquinoline aporphine-type alkaloid recently identified in Stephania plants,exhibits anti-inflammatory properties,but its underlying mechanisms of action are unknown at present.In this study,we explored whether SA could ameliorate RA through inhibition of the NF-κB signaling pathway in association with TNF-αactivity.Our experiments revealed a binding affinity(K_(D))of SA for TNF-αof 2.934×10^(-6)mol/L.Additionally,SA at a concentration of 10μmol/L effectively hindered the binding of TNF-αto its receptors tumor necrosis factor receptor 1(TNFR1)and TNFR2.In vitro,SA prevented TNF-α-induced death of L929 cells and blocked NF-κB activation triggered by TNF-αin 293-TNF-αresponsive,as well as human fibroblast-like synoviocytes(HFLS)and human RA fibroblast-like synoviocytes(MH7A)cell lines.Furthermore,in a collagen-induced arthritis(CIA)mouse model,SA alleviated the symptoms of RA through suppression of NF-κB signaling.Our collective findings support the therapeutic efficacy of SA,a natural compound targeting TNF-α,in the management of RA.展开更多
Insects first began evolving hundreds of millions of years ago,and aided by gut microbes,they have been consuming hydrocarbon polymers ever since.Few man-made plastic polymers are chemically novel,so it is reasonable ...Insects first began evolving hundreds of millions of years ago,and aided by gut microbes,they have been consuming hydrocarbon polymers ever since.Few man-made plastic polymers are chemically novel,so it is reasonable that insect/microbe systems can be found or developed to degrade them rapidly.However,remediation of global plastic waste problems should involve more than just conversion into CO_(2).Some industryscale microbial enzymatic degradation of plastic polymers may yield valuable monomers,but the plastic waste starting material must be of uniform chemistry and clean.This adds cost to the process.Many insect species can be utilized for animal feed as well as human food.Some of these insects have the capability to degrade plastic polymers.However,valorizing plastic wastes by producing edible insects or useful frass has largely been overlooked.Here we assemble the current knowledge of plastic degradation rates by insects.In addition,we also show the first instance of insect degradation of polyurethane and the first identification and isolation of insect gut fungi as directly aiding insect degradation.展开更多
Walnut dreg protein hydrolysates(WDPHs)exhibit a variety of biological activities,however,the cyclooxygenase-2(COX-2)inhibitory peptide of WDPHs remain unclear.The aim of this study was to rapidly screen for such pept...Walnut dreg protein hydrolysates(WDPHs)exhibit a variety of biological activities,however,the cyclooxygenase-2(COX-2)inhibitory peptide of WDPHs remain unclear.The aim of this study was to rapidly screen for such peptides in WDPHs through a combination of in silico and in vitro analysis.In total,1262 peptide sequences were observed by nano liquid chromatography/tandem mass spectrometry(nano LC-MS/MS)and 4 novel COX-2 inhibitory peptides(AGFP,FPGA,LFPD,and VGFP)were identified.Enzyme kinetic data indicated that AGFP,FPGA,and LFPD displayed mixed-type COX-2 inhibition,whereas VGFP was a non-competitive inhibitor.This is mainly because the peptides form hydrogen bonds and hydrophobic interactions with residues in the COX-2 active site.These results demonstrate that computer analysis combined with in vitro evaluation allows for rapid screening of COX-2 inhibitory peptides in walnut protein dregs.展开更多
Let A be a commutative unital C^(*)-algebra with the unit element e and M be a full Hilbert A-module.Denote by End_(A)(M)the algebra of all bounded A-linear mappings on M and by M′the set of all bounded A-linear mapp...Let A be a commutative unital C^(*)-algebra with the unit element e and M be a full Hilbert A-module.Denote by End_(A)(M)the algebra of all bounded A-linear mappings on M and by M′the set of all bounded A-linear mappings from M into A.In this paper,we prove that if there exists x_(0) in M and f_(0) in M′such that f_(0)(x_(0))=e,then every A-linear Lie triple derivation on End_(A)(M)is standard.展开更多
White spot syndrome virus (WSSV) is one of the most important pathogens in the world. Since its outbreak in 1993, the virus has caused huge economic losses. Studies have confirmed that in the early stage of infection,...White spot syndrome virus (WSSV) is one of the most important pathogens in the world. Since its outbreak in 1993, the virus has caused huge economic losses. Studies have confirmed that in the early stage of infection, VP28, the main envelope protein of WSSV, as a viral adhesion protein, binds to PcRab7 of <em>Penaeus chinensis</em> to help the virus enter the host cells. Understanding the mechanism of PcRab7-VP28 interaction is of great significance to understand the mechanism of WSSV infection and the development of antiviral drugs. In this research, the interaction interface and interaction sites were predicted by using the methods of molecular simulations. Results showed that VP28 binds to the second <em>β</em>-sheet (L73-D86) of PcRab7, which is consistent with the region detected in previous studies. Furthermore, we speculated the possible interaction sites in PcRab7 are E81, F77 and D76. These results may contribute to a deep understanding of the infection mechanism of WSSV on the host.展开更多
Bronchobiliary fistula(BBF) is one of the very rare disease.In this report,we described a BBF case.The case was diagnosed by endoscopic retrograde cholangio-pancreatography(ERCP) and percutaneous transhepatic cholangi...Bronchobiliary fistula(BBF) is one of the very rare disease.In this report,we described a BBF case.The case was diagnosed by endoscopic retrograde cholangio-pancreatography(ERCP) and percutaneous transhepatic cholangial drainage(PTCD) examinations,and treated properly.From the diagnosis of this BBF case,a patient with cough,biliptysis,fever and pain,should be considered for diagnosis of BBF.展开更多
Most proteins adopt an approximate structural symmetry. However, they have no symmetry detectable in their sequences and it is unclear for most of these proteins whether their structural symmetry originates from dupli...Most proteins adopt an approximate structural symmetry. However, they have no symmetry detectable in their sequences and it is unclear for most of these proteins whether their structural symmetry originates from duplication. As one of the six popular folds (super-folds) possessing an approximate structural symmetry, the triosephosphate isomerase barrel (TIM-barrel) domain has been widely studied. Using modified recurrent quantification analysis of primary sequences, we identified the same 2-, 3-, and 4-fold symmetry pattern as their tertiary structures. This result indicates that the symmetry in tertiary structure is coded by symmetry in the primary sequence and that the TIM-barrel adopts a 2-, 3-, or 4-fold repeat pattern during evolution. This discovery will be useful for understanding the evolutionary mechanisms of this protein family and the symmetry pattern that may be a clue into the ancient origin of duplication of half-barrels or the β a unit.展开更多
White spot syndrome virus (WSSV) is one of the most important pathogens that endanger the global shrimp aquaculture. Studies have confirmed that in the early stage of infection, VP28, the main envelope protein of WSSV...White spot syndrome virus (WSSV) is one of the most important pathogens that endanger the global shrimp aquaculture. Studies have confirmed that in the early stage of infection, VP28, the main envelope protein of WSSV, is used as a viral adhesion protein to bind PcRab7 of Penaeus chinensis, helping virus enter the host cells, resulting in shrimp infection. Hence, inhibition of envelope protein VP28 would be a novel way to deal with the infection. Peptide 2E6 was confirmed to have a high specificity and blocked virus infection. However, the mechanism by which it combines with VP28 is not clear. Clarifying the binding mechanism between peptides and VP28 is of great significance for further optimization and screening of antiviral peptides. In this research, the MD simulation and binding free energy analysis were implemented to validate and capture intermolecular interactions aims to clarify the blocking mechanism.展开更多
Titanium(Ti)and its alloy implants often face issues such as insufficient tissue adhesion and vulnerability of the bio inert surface.Given that the long-term stability of implants depends on their perfect integration ...Titanium(Ti)and its alloy implants often face issues such as insufficient tissue adhesion and vulnerability of the bio inert surface.Given that the long-term stability of implants depends on their perfect integration with the surrounding tissues to withstand various environmental stresses,current research mainly focuses on mimicking the structure of the extracellular matrix.The aim is to promote bone tissue formation through regulation of the immune response by metal ions,thereby enhancing the effectiveness of tissue integration.The self-assembled zinc(Zn)-doped hydroxyapatite nanoparticles(nHA)with polydopamine(PDA)and copper ions(Cu^(2+))was deposited onto the alkali treated Ti surface to fabricate the P-Zn-Cu/Ti coating.The so-constructed multifunc-tional coating with bionic micro/nano-structures on the Ti surface can achieve the sequential release of Cu^(2+)and zinc ions(Zn^(2+))through the rapid release of Cu^(2+)in the early stage and the slow release of Zn^(2+),and followed the functional characteristics of sequentially regulating antibacterial,immune,and osteogenic responses.This study presents a promising strategy to address the challenges associated with the failure of Ti implants,thus promoting the development of implant technology and improving clinical efficacy.展开更多
Tea is the world's oldest and most popular caffeine-containing beverage with immense economic, medicinal, and cultural importance. Here, we present the first high-quality nucleotide sequence of the repeat-rich (80.9...Tea is the world's oldest and most popular caffeine-containing beverage with immense economic, medicinal, and cultural importance. Here, we present the first high-quality nucleotide sequence of the repeat-rich (80.9%), 3.02-Gb genome of the cultivated tea tree Camellia sinensis. We show that an extraordinarily large genome size of tea tree is resulted from the slow, steady, and long-term amplification of a few LTR retrotransposon families. In addition to a recent whole-genome duplication event, lineage-specific expansions of genes associated with flavonoid metabolic biosynthesis were discovered, which enhance catechin production, terpene enzyme activation, and stress tolerance, important features for tea flavor and adaptation. We demonstrate an independent and rapid evolution of the tea caffeine synthesis pathway relative to cacao and coffee. A comparative study among 25 Camellia species revealed that higher expression levels of most flavonoid- and caffeinebut not theanine-related genes contribute to the increased production of catechins and caffeine and thus enhance tea-processing suitability and tea quality. These novel findings pave the way for further metabolomic and functional genomic refinement of characteristic biosynthesis pathways and will help develop a more diversified set of tea flavors that would eventually satisfy and attract more tea drinkers worldwide.展开更多
Dendrobium officinale Kimura et Migo is a traditional Chinese orchid herb that has both ornamental value and a broad range of therapeutic effects. Here, we report the first de novo assembled 1.35 Gb genome se- quences...Dendrobium officinale Kimura et Migo is a traditional Chinese orchid herb that has both ornamental value and a broad range of therapeutic effects. Here, we report the first de novo assembled 1.35 Gb genome se- quences for D. officinale by combining the second-generation Illumina Hiseq 2000 and third-generation PacBio sequencing technologies. We found that orchids have a complete inflorescence gene set and have some specific inflorescence genes. We observed gene expansion in gene families related to fungus symbiosis and drought resistance. We analyzed biosynthesis pathways of medicinal components of D. officinale and found extensive duplication of SPS and SuSy genes, which are related to polysaccharide generation, and that the pathway of D. officinale alkaloid synthesis could be extended to generate 16- epivellosimine. The D. officinale genome assembly demonstrates a new approach to deciphering large complex genomes and, as an important orchid species and a traditional Chinese medicine, the D. officinale genome will facilitate future research on the evolution of orchid plants, as well as the study of medicinal components and potential genetic breeding of the dendrobe.展开更多
Fungal diversity notes is one of the important journal series of fungal taxonomy that provide detailed descriptions and illustrations of new fungal taxa,as well as providing new information of fungal taxa worldwide.Th...Fungal diversity notes is one of the important journal series of fungal taxonomy that provide detailed descriptions and illustrations of new fungal taxa,as well as providing new information of fungal taxa worldwide.This article is the 11th contribution to the fungal diversity notes series,in which 126 taxa distributed in two phyla,six classes,24 orders and 55 families are described and illustrated.Taxa in this study were mainly collected from Italy by Erio Camporesi and also collected from China,India and Thailand,as well as in some other European,North American and South American countries.Taxa described in the present study include two new families,12 new genera,82 new species,five new combinations and 25 new records on new hosts and new geographical distributions as well as sexual-asexual reports.The two new families are Eriomycetaceae(Dothideomycetes,family incertae sedis)and Fasciatisporaceae(Xylariales,Sordariomycetes).The twelve new genera comprise Bhagirathimyces(Phaeosphaeriaceae),Camporesiomyces(Tubeufiaceae),Eriocamporesia(Cryphonectriaceae),Eriomyces(Eriomycetaceae),Neomonodictys(Pleurotheciaceae),Paraloratospora(Phaeosphaeriaceae),Paramonodictys(Parabambusicolaceae),Pseudoconlarium(Diaporthomycetidae,genus incertae sedis),Pseudomurilentithecium(Lentitheciaceae),Setoapiospora(Muyocopronaceae),Srinivasanomyces(Vibrisseaceae)and Xenoanthostomella(Xylariales,genera incertae sedis).The 82 new species comprise Acremonium chiangraiense,Adustochaete nivea,Angustimassarina camporesii,Bhagirathimyces himalayensis,Brunneoclavispora camporesii,Camarosporidiella camporesii,Camporesiomyces mali,Camposporium appendiculatum,Camposporium multiseptatum,Camposporium septatum,Canalisporium aquaticium,Clonostachys eriocamporesiana,Clonostachys eriocamporesii,Colletotrichum hederiicola,Coniochaeta vineae,Conioscypha verrucosa,Cortinarius ainsworthii,Cortinarius aurae,Cortinarius britannicus,Cortinarius heatherae,Cortinarius scoticus,Cortinarius subsaniosus,Cytospora fusispora,Cytospora rosigena,Diaporthe camporesii,Diaporthe nigra,Diatrypella yunnanensis,Dictyosporium muriformis,Didymella camporesii,Diutina bernali,Diutina sipiczkii,Eriocamporesia aurantia,Eriomyces heveae,Ernakulamia tanakae,Falciformispora uttaraditensis,Fasciatispora cocoes,Foliophoma camporesii,Fuscostagonospora camporesii,Helvella subtinta,Kalmusia erioi,Keissleriella camporesiana,Keissleriella camporesii,Lanspora cylindrospora,Loratospora arezzoensis,Mariannaea atlantica,Melanographium phoenicis,Montagnula camporesii,Neodidymelliopsis camporesii,Neokalmusia kunmingensis,Neoleptosporella camporesiana,Neomonodictys muriformis,Neomyrmecridium guizhouense,Neosetophoma camporesii,Paraloratospora camporesii,Paramonodictys solitarius,Periconia palmicola,Plenodomus triseptatus,Pseudocamarosporium camporesii,Pseudocercospora maetaengensis,Pseudochaetosphaeronema kunmingense,Pseudoconlarium punctiforme,Pseudodactylaria camporesiana,Pseudomurilentithecium camporesii,Pseudotetraploa rajmachiensis,Pseudotruncatella camporesii,Rhexocercosporidium senecionis,Rhytidhysteron camporesii,Rhytidhysteron erioi,Septoriella camporesii,Setoapiospora thailandica,Srinivasanomyces kangrensis,Tetraploa dwibahubeeja,Tetraploa pseudoaristata,Tetraploa thrayabahubeeja,Torula camporesii,Tremateia camporesii,Tremateia lamiacearum,Uzbekistanica pruni,Verruconis mangrovei,Wilcoxina verruculosa,Xenoanthostomella chromolaenae and Xenodidymella camporesii.The five new combinations are Camporesiomyces patagoniensis,Camporesiomyces vaccinia,Camposporium lycopodiellae,Paraloratospora gahniae and Rhexocercosporidium microsporum.The 22 new records on host and geographical distribution comprise Arthrinium marii,Ascochyta medicaginicola,Ascochyta pisi,Astrocystis bambusicola,Camposporium pellucidum,Dendryphiella phitsanulokensis,Diaporthe foeniculina,Didymella macrostoma,Diplodia mutila,Diplodia seriata,Heterosphaeria patella,Hysterobrevium constrictum,Neodidymelliopsis ranunculi,Neovaginatispora fuckelii,Nothophoma quercina,Occultibambusa bambusae,Phaeosphaeria chinensis,Pseudopestalotiopsis theae,Pyxine berteriana,Tetraploa sasicola,Torula gaodangensis and Wojnowiciella dactylidis.In addition,the sexual morphs of Dissoconium eucalypti and Phaeosphaeriopsis pseudoagavacearum are reported from Laurus nobilis and Yucca gloriosa in Italy,respectively.The holomorph of Diaporthe cynaroidis is also reported for the first time.展开更多
基金supported by grants from the National Natural Science Foundation of China(82404638)the Xingdian Talent Plan of Yunnan Province(XDYC-QNRC-2023-0427,XDYC-YLXZ 2022-0025)the Natural Science Foundation of Yunnan Province(202101BD070001-034,202101BD070001-049,202201AT070267,202201AU070183).
文摘Excessive osteoclastogenesis-mediated osteoporosis has been recognized as a global health concern.Candidate compounds derived from medicinal plants or functional foods are promising to treat osteoporosis due to their high safety and efficiency.(−)-Epigallocatechin-3-gallate(EGCG)is the most abundant and biologically active polyphenol in green tea.It can inhibit osteoclastogenesis in vitro by blocking receptor activator of nuclear factor(NF)-κB(RANK)signaling pathways.This study used the ovariectomized(OVX)mouse model to estimate the therapeutic effect of EGCG on osteoporosis and verified the molecular mechanism in vivo.The results revealed that EGCG significantly inhibited the OVX-induced body weight gain.Moreover,no adverse effects were observed on blood glucose,histomorphological features,weights,as well as indices of liver and kidney in OVX mice.EGCG could significantly ameliorate bone loss in OVX mice by inhibiting osteoclastogenesis.This effect was evidenced by the reduced number of osteoclasts and the increased trabecular bone area in the femurs.Moreover,EGCG inhibited the activities of c-telopeptide of type I collagen(CTX-I)and tartrate-resistant acid phosphatase 5b(TRACP-5b)and strengthened bone gla protein(BGP)and procollagen I N-terminal peptide(PINP)activities in OVX mice.Mechanistically,EGCG significantly downregulated the expression of osteoclastogenesis-related marker genes and proteins,including nuclear factor of activated T cells,cytoplasmic 1(NFATc1),c-Fos,tartrate-resistant acid phosphatase(TRAP),c-Src,and cathepsin K.In addition,the phosphorylation levels of p65,c-Jun N-terminal kinase(JNK),extracellular signal-regulated kinase 1/2(ERK1/2),p38,and protein kinase B(AKT)were significantly suppressed in OVX mice.It was found that EGCG could alleviate OVX-induced bone loss in mice by suppressing osteoclastogenesis by blocking the NF-κB,mitogen-activated protein kinase(MAPK),and AKT signaling pathways.EGCG has the potential to prevent and treat osteoclast-related diseases such as osteoporosis.
基金Supported by the 2022 Provincial Quality Engineering Project for Higher Education Institutions,No.2022sx031the 2023 Provincial Quality Engineering Project for Higher Education Institutions,No.2023jyxm1071.
文摘BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.
基金supported by the grants from the National Natural Science Foundation of China(82404638)the Xingdian Talent Plan of Yunnan Province(XDYC-QNRC-2023-0427 and XDYC-YLXZ2022-0025)the Natural Science Foundation of Yunnan Province(202101BD070001-034,202101BD070001-049,202201AT070267,and 202201AU070183)。
文摘Steroidal alkaloids are the main active components in many medicinal plants and exhibit diverse biological activities.Axillaridine A(AA)is a newly discovered steroidal alkaloid.However,whether AA could suppress osteoclastogenesis and alleviate ovariectomy-induced bone loss in mice remains unknown.In vitro,AA significantly suppressed the receptor activator of nuclear factor-κB(NF-κB)ligand(RANKL)-induced osteoclast differentiation via downregulating the expression of osteoclastogenesis-related marker genes,proteins,and transcriptional regulators,including tartrate-resistant acid phosphatase(TRAP),c-Src,matrix metallopeptidase-9(MMP-9),cathepsin K,nuclear factor of activated T cells,cytoplasmic 1(NFATc1),and c-Fos.This was achieved by blocking RANKL-RANK interaction and inhibiting RANKL-mediated RANK signaling pathways,including NF-κB,AKT,and mitogen-activated protein kinases(MAPKs)in osteoclast precursors.In vivo,AA significantly inhibited the ovariectomized(OVX)-induced body weight gain and blood glucose increase in mice.AA did not adversely affect the histomorphologies,weights,and indices of the kidney and liver in OVX mice.AA effectively ameliorated bone loss in OVX mice by inhibiting osteoclastogenesis.AA significantly inhibited the serum levels of tartrate-resistant acid phosphatase 5b(TRACP-5b)and C-telopeptide of type I collagen(CTX-I).AA significantly inhibited the OVX-induced expression of osteoclastogenesis-related marker genes and proteins in the femur.In summary,AA alleviates ovariectomy-induced bone loss in mice by suppressing osteoclastogenesis via inhibition of RANKL-mediated RANK signaling pathways and could be potentially used for the prevention and treatment of osteoclastrelated diseases such as osteoporosis.
基金supported by National Natural Science Foundation of China(82260703)。
文摘People living long-term in areas with UV will cause premature photoaging.An abnormal reduction in autophagy is a key feature of photoaging,and p38 MAPK has been regarded as a key regulator of autophagy.Isothiocyanate is one of the main active components of Moringa oleifera Lam.seeds.Studies have reported that M.oleifera Lam.seeds iso thiocyanate(MITC)has anticancer,anti-inflammatory,cardio metabolic repair,nervous system protection,blood lipid regulation and diabetes prevention properties.However,the molecular mechanisms of MITC with protective effects against skin photoaging have not been studied thus far.In this study,we aimed to evaluate the antiphotoaging activity of MITC and to investigate the effect of p38 MAPK-dependent autophagy in vivo and in vitro models of photoaging.In this research we found that MITC can reverse the intracellular reactive oxygen species(ROS)content and inhibit the activation of p38 MAPK to improve the autophagy level,reduce the expression of matrix metalloproteinases(MMPs),and finally protect against photoaging by UV.Our results will uncover the molecular mechanisms of MITC that play a role in the protective effects against skin photoaging,provide helpful information for developing MITC as an anti-photoaging plant material and improve the utilization of M.oleifera Lam.seeds.
文摘Moringa oleifera have laxative effects,but their active compositions and mechanisms are not very clear thus far.To this end,we systematically explored the active components and mechanism of M.oleifera leaves in relieving constipation by using the slow transit constipation(STC)mouse model and network pharmacology.The results of animal experiments showed that M.oleifera aqueous extract(MOA)had good laxative activity,and its 70%alcohol soluble part(ASP)also showed significant laxative activity(P<0.01).Network pharmacological prediction results suggested that L-phenylalanine(Phe)was the key compound of ASP,and it might relieve constipation through tachykinin receptor 1(TACR1)and three kinds of adrenergic receptors,includingα_(1A)(ADRA1A),α_(2A)(ADRA2A),andα_(2B)(ADRA2B).Further animal experiment results showed that Phe significantly promoted gastrointestinal motility.Phe may relieve STC by enhancing the release of substance P(SP)and upregulating the m RNA expression of TACR1 in the ileum.Importantly,Phe may also promote intestinal movement by downregulating the m RNA expression of ADRA2A and ADRA2B and upregulating the m RNA expression of Calm and the m RNA and protein expression of myosin light chain 9 in the ileum,thereby activating the G protein-coupled receptor-myosin light chain signaling pathway.These results lay a foundation for the application of M.oleifera and Phe in constipation.
基金supported by Major Project of Science and Technology Department of Yunnan Province(202002AA100005,202102AE090027-2)National Natural Science Foundation of China(82260703)+1 种基金Cassava Industrial Technology System of China(CARS11-YNTY)Yunnan Province Ten Thousand Plan Industrial Technology Talents Project(YNWR-CYJS-2020-010)。
文摘Moringa oleifera Lam.is a Moringa genus in the Moringaceae family that is high in nutrients and has a wide range of applications.Phenolic compounds are widely found in plants and have various health benefits for the human body.With its high content and wide variety of phenolic compounds,M.oleifera Lam.has been widely studied for its health benefits.The phenolic compounds in M.oleifera Lam.(MOPCs)can be a potential source of functional food ingredients in pharmaceutical and industrial applications.Numerous studies have shown that MOPCs have antioxidant,anti-obesity,anti-diabetic,and antibacterial effects.Although the research on MOPCs has been gradually increasing,the extraction,isolation,identification,biological activities,and comprehensive application of MOPCs need a more systematic summary and generalization.Therefore,this paper reviews the isolation and extraction methods,structure identification,biological activities,and comprehensive applications to provide a further reference for the research and application of MOPCs.
基金supported by the Basic Research Project of Yunnan Provincial Science and Technology Department(202201AT070262)the Project of Yunnan Province Food and Drug Homologous Resources Functional Food Innovation Team(A3032023057)+1 种基金the Yunnan Province Ten Thousand Plan Industrial Technology Talents Project(YNWR-CYJS-2020-010)the Yunnan Province-City Integration Project(202302 AN360002).
文摘Obesity has brought great challenges to global human health,and how to effectively prevent and control the occurrence and development of obesity has become an urgent problem.The role and mechanism of 4-[(α-Lrhamnosyloxy)benzyl]isothiocyanate(MITC),an active ingredient of Moringa oleifera Lam.,in the regulation of lipid metabolism have not been comprehensively investigated.In the present study,we investigated the mechanism of MITC in inhibiting lipid accumulation in mice fed with a high-fat diet(HFD)in terms of both lipolysis and central appetite regulation mediated by the gut microbe-gut-brain axis.MITC enhanced the characteristic indices associated with HFD mice and also promoted adipocytolysis and brown fat thermogenesis.Moreover,MITC was observed to improve leptin resistance,modulate the composition of gut microbiota such as Ruminococcaceae,Parasutterella,and Acetatifactor,promote 5-hydroxytryptamine secretion,further enhance the secretion of glucagon-like peptide-1(GLP-1)and peptide tyrosine-tyrosine(PYY)to activate peroxisome proliferator-activated receptor(PPAR)signaling in the hypothalamus,and modulate feeding behavior to inhibit lipid accumulation in HFD mice.These data suggest that MITC supplementation can help to alleviate obesity or obesity-related diseases.
基金supported by the grants from the National Natural Science Foundation of China(82404638)the Xingdian Talent Plan of Yunnan Province(XDYC-QNRC-2023-0427 and XDYC-YLXZ-2022-0025)the Natural Science Foundation of Yunnan Province(202101BD070001-034,202101BD070001-049,202201AT070267,and 202201AU070183).
文摘Tumor necrosis factor-α(TNF-α)is a key player in the pathogenesis of rheumatoid arthritis(RA)and considered a promising target for therapeutic drug development.Activation of the nuclear factor-kappa B(NF-κB)pathway upon TNF-αbinding to its receptor is crucial for progression of RA.Stephanine(SA),an isoquinoline aporphine-type alkaloid recently identified in Stephania plants,exhibits anti-inflammatory properties,but its underlying mechanisms of action are unknown at present.In this study,we explored whether SA could ameliorate RA through inhibition of the NF-κB signaling pathway in association with TNF-αactivity.Our experiments revealed a binding affinity(K_(D))of SA for TNF-αof 2.934×10^(-6)mol/L.Additionally,SA at a concentration of 10μmol/L effectively hindered the binding of TNF-αto its receptors tumor necrosis factor receptor 1(TNFR1)and TNFR2.In vitro,SA prevented TNF-α-induced death of L929 cells and blocked NF-κB activation triggered by TNF-αin 293-TNF-αresponsive,as well as human fibroblast-like synoviocytes(HFLS)and human RA fibroblast-like synoviocytes(MH7A)cell lines.Furthermore,in a collagen-induced arthritis(CIA)mouse model,SA alleviated the symptoms of RA through suppression of NF-κB signaling.Our collective findings support the therapeutic efficacy of SA,a natural compound targeting TNF-α,in the management of RA.
基金Key Research Program of the Ministry of Sciences and Technology(Grant No.2017YFC0505101)of ChinaChinese Academy of Sciences,President’s International Fellowship Initiative(CAS-PIFI),Grant No.2019PC0011,2017PC0035+7 种基金Key Research Program of Frontier Sciences,CAS,Grant No.QYZDY-SSW-SMC014We thank the National Science Foundation of China(NSFC)for funding this work under the project codes Y4ZK111B01,41761144055,3181101433,41771063,31650410651,41761144055 and 31550110215We are thankful to Zhijia Gu,Key Laboratories for Plant Diversity and Biogeography of East China,Kunming Institute of Botany,Chinese Academy of Sciences for scanning electron microscopy.G.G.O.Dossa thanks China Postdoctoral Foundation Grant No.2017M613021the young international staff Chinese Academy of Sciences(CAS)president international fellowship initiative(PIFI)grants#2019FYB0001 and 2017PC0035Heng Gui would thank the CPSF-CAS Joint Foundation for Excellent Postdoctoral Fellows(Grant No.2017LH029)the China Postdoctoral Science Foundation(Grant No.2018M633435)the 2018 Yunnan Province Postdoctoral Science Research Foundation.Heng Gui would also like to thank the support from the Human Resources and Social Security Department of Yunnan Province,German Academic Exchange Service(DAAD)under the program:Research Stays for University Academics and Scientists,2018(Ref.No.91691203)the China Scholarship Council under the State Scholarship Fund(Ref.No.201804910259).
文摘Insects first began evolving hundreds of millions of years ago,and aided by gut microbes,they have been consuming hydrocarbon polymers ever since.Few man-made plastic polymers are chemically novel,so it is reasonable that insect/microbe systems can be found or developed to degrade them rapidly.However,remediation of global plastic waste problems should involve more than just conversion into CO_(2).Some industryscale microbial enzymatic degradation of plastic polymers may yield valuable monomers,but the plastic waste starting material must be of uniform chemistry and clean.This adds cost to the process.Many insect species can be utilized for animal feed as well as human food.Some of these insects have the capability to degrade plastic polymers.However,valorizing plastic wastes by producing edible insects or useful frass has largely been overlooked.Here we assemble the current knowledge of plastic degradation rates by insects.In addition,we also show the first instance of insect degradation of polyurethane and the first identification and isolation of insect gut fungi as directly aiding insect degradation.
基金supported by the Major Project of Science and Technology Department of Yunnan Province (202002AA100005 and 202102AE090027-2)the Project of Yunnan Province Food and Drug Homologous Resources Functional Food Innovation Team (A3032023057)+2 种基金the YEFICRC project of Yunnan provincial key programs (2019ZG009)Yunnan Province Ten Thousand Plan Industrial Technology Talents project (YNWR-CYJS-2020-010)the Yunnan Provincial Department of Science and Technology Agricultural Joint Special Project (202101BD070001-120)。
文摘Walnut dreg protein hydrolysates(WDPHs)exhibit a variety of biological activities,however,the cyclooxygenase-2(COX-2)inhibitory peptide of WDPHs remain unclear.The aim of this study was to rapidly screen for such peptides in WDPHs through a combination of in silico and in vitro analysis.In total,1262 peptide sequences were observed by nano liquid chromatography/tandem mass spectrometry(nano LC-MS/MS)and 4 novel COX-2 inhibitory peptides(AGFP,FPGA,LFPD,and VGFP)were identified.Enzyme kinetic data indicated that AGFP,FPGA,and LFPD displayed mixed-type COX-2 inhibition,whereas VGFP was a non-competitive inhibitor.This is mainly because the peptides form hydrogen bonds and hydrophobic interactions with residues in the COX-2 active site.These results demonstrate that computer analysis combined with in vitro evaluation allows for rapid screening of COX-2 inhibitory peptides in walnut protein dregs.
基金Supported by the Shaanxi College Students Innovation and Entrepreneurship Training Program(Grant No.S202110708069)。
文摘Let A be a commutative unital C^(*)-algebra with the unit element e and M be a full Hilbert A-module.Denote by End_(A)(M)the algebra of all bounded A-linear mappings on M and by M′the set of all bounded A-linear mappings from M into A.In this paper,we prove that if there exists x_(0) in M and f_(0) in M′such that f_(0)(x_(0))=e,then every A-linear Lie triple derivation on End_(A)(M)is standard.
文摘White spot syndrome virus (WSSV) is one of the most important pathogens in the world. Since its outbreak in 1993, the virus has caused huge economic losses. Studies have confirmed that in the early stage of infection, VP28, the main envelope protein of WSSV, as a viral adhesion protein, binds to PcRab7 of <em>Penaeus chinensis</em> to help the virus enter the host cells. Understanding the mechanism of PcRab7-VP28 interaction is of great significance to understand the mechanism of WSSV infection and the development of antiviral drugs. In this research, the interaction interface and interaction sites were predicted by using the methods of molecular simulations. Results showed that VP28 binds to the second <em>β</em>-sheet (L73-D86) of PcRab7, which is consistent with the region detected in previous studies. Furthermore, we speculated the possible interaction sites in PcRab7 are E81, F77 and D76. These results may contribute to a deep understanding of the infection mechanism of WSSV on the host.
文摘Bronchobiliary fistula(BBF) is one of the very rare disease.In this report,we described a BBF case.The case was diagnosed by endoscopic retrograde cholangio-pancreatography(ERCP) and percutaneous transhepatic cholangial drainage(PTCD) examinations,and treated properly.From the diagnosis of this BBF case,a patient with cough,biliptysis,fever and pain,should be considered for diagnosis of BBF.
文摘Most proteins adopt an approximate structural symmetry. However, they have no symmetry detectable in their sequences and it is unclear for most of these proteins whether their structural symmetry originates from duplication. As one of the six popular folds (super-folds) possessing an approximate structural symmetry, the triosephosphate isomerase barrel (TIM-barrel) domain has been widely studied. Using modified recurrent quantification analysis of primary sequences, we identified the same 2-, 3-, and 4-fold symmetry pattern as their tertiary structures. This result indicates that the symmetry in tertiary structure is coded by symmetry in the primary sequence and that the TIM-barrel adopts a 2-, 3-, or 4-fold repeat pattern during evolution. This discovery will be useful for understanding the evolutionary mechanisms of this protein family and the symmetry pattern that may be a clue into the ancient origin of duplication of half-barrels or the β a unit.
文摘White spot syndrome virus (WSSV) is one of the most important pathogens that endanger the global shrimp aquaculture. Studies have confirmed that in the early stage of infection, VP28, the main envelope protein of WSSV, is used as a viral adhesion protein to bind PcRab7 of Penaeus chinensis, helping virus enter the host cells, resulting in shrimp infection. Hence, inhibition of envelope protein VP28 would be a novel way to deal with the infection. Peptide 2E6 was confirmed to have a high specificity and blocked virus infection. However, the mechanism by which it combines with VP28 is not clear. Clarifying the binding mechanism between peptides and VP28 is of great significance for further optimization and screening of antiviral peptides. In this research, the MD simulation and binding free energy analysis were implemented to validate and capture intermolecular interactions aims to clarify the blocking mechanism.
基金supported by the National Natural Science Foundation of China(52071277)the key project of The General Hospital of Western Theater Command of PLA(GY-A-12).
文摘Titanium(Ti)and its alloy implants often face issues such as insufficient tissue adhesion and vulnerability of the bio inert surface.Given that the long-term stability of implants depends on their perfect integration with the surrounding tissues to withstand various environmental stresses,current research mainly focuses on mimicking the structure of the extracellular matrix.The aim is to promote bone tissue formation through regulation of the immune response by metal ions,thereby enhancing the effectiveness of tissue integration.The self-assembled zinc(Zn)-doped hydroxyapatite nanoparticles(nHA)with polydopamine(PDA)and copper ions(Cu^(2+))was deposited onto the alkali treated Ti surface to fabricate the P-Zn-Cu/Ti coating.The so-constructed multifunc-tional coating with bionic micro/nano-structures on the Ti surface can achieve the sequential release of Cu^(2+)and zinc ions(Zn^(2+))through the rapid release of Cu^(2+)in the early stage and the slow release of Zn^(2+),and followed the functional characteristics of sequentially regulating antibacterial,immune,and osteogenic responses.This study presents a promising strategy to address the challenges associated with the failure of Ti implants,thus promoting the development of implant technology and improving clinical efficacy.
基金This work was supported by the project of Yunnan Innovation Team Project, the Hundreds Oversea Talents Program of Yunnan Province, the Top Talents Program of Yunnan Province (Grant 20080A009), the Key Project of the Natural Science Foundation of Yunnan Province (201401 PC00397), National Science Foundation of China (U0936603), Key Project of Natural Science Foundation of Yunnan Province (2008CC016), Frontier Grant of Kunming Institute of Botany, CAS (672705232515), Top Talents Program of Yunnan Province (20080A009), and Hundreds Talents Program of Chinese Academy of Sciences (CAS) (to L.G.).
文摘Tea is the world's oldest and most popular caffeine-containing beverage with immense economic, medicinal, and cultural importance. Here, we present the first high-quality nucleotide sequence of the repeat-rich (80.9%), 3.02-Gb genome of the cultivated tea tree Camellia sinensis. We show that an extraordinarily large genome size of tea tree is resulted from the slow, steady, and long-term amplification of a few LTR retrotransposon families. In addition to a recent whole-genome duplication event, lineage-specific expansions of genes associated with flavonoid metabolic biosynthesis were discovered, which enhance catechin production, terpene enzyme activation, and stress tolerance, important features for tea flavor and adaptation. We demonstrate an independent and rapid evolution of the tea caffeine synthesis pathway relative to cacao and coffee. A comparative study among 25 Camellia species revealed that higher expression levels of most flavonoid- and caffeinebut not theanine-related genes contribute to the increased production of catechins and caffeine and thus enhance tea-processing suitability and tea quality. These novel findings pave the way for further metabolomic and functional genomic refinement of characteristic biosynthesis pathways and will help develop a more diversified set of tea flavors that would eventually satisfy and attract more tea drinkers worldwide.
文摘Dendrobium officinale Kimura et Migo is a traditional Chinese orchid herb that has both ornamental value and a broad range of therapeutic effects. Here, we report the first de novo assembled 1.35 Gb genome se- quences for D. officinale by combining the second-generation Illumina Hiseq 2000 and third-generation PacBio sequencing technologies. We found that orchids have a complete inflorescence gene set and have some specific inflorescence genes. We observed gene expansion in gene families related to fungus symbiosis and drought resistance. We analyzed biosynthesis pathways of medicinal components of D. officinale and found extensive duplication of SPS and SuSy genes, which are related to polysaccharide generation, and that the pathway of D. officinale alkaloid synthesis could be extended to generate 16- epivellosimine. The D. officinale genome assembly demonstrates a new approach to deciphering large complex genomes and, as an important orchid species and a traditional Chinese medicine, the D. officinale genome will facilitate future research on the evolution of orchid plants, as well as the study of medicinal components and potential genetic breeding of the dendrobe.
基金The authors would like to thank Yunnan Provincial Key Programs of Yunnan Eco-friendly Food International Cooperation Research Center Project under Grant 2019ZG00908 and Key Research Program of Frontier Sciences“Response of Asian mountain ecosystems to global change”,CAS,Grant No.QYZDY-SSWSMC014We also thank to the director Jun-Bo Yang and Plant Germplasm and Genomics Center in Germplasm Bank of Wild Species,Kunming Institute of Botany for the molecular laboratory support.Kevin D.Hyde thanks the 2019 high-end foreign expert introduction plan to Kunming Institute of Botany(Granted by the Ministry of Science and Technology of the People’s Republic of China,Grant Number G20190139006)+16 种基金Thailand Research Grants entitled Biodiversity,phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans(Grant No.RSA5980068)the future of specialist fungi in a changing climate:baseline data for generalist and specialist fungi associated with ants,Rhododendron species and Dracaena species(Grant No.DBG6080013)Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion(Grant No.RDG6130001)Kevin D.Hyde also thanks Chiang Mai University for the award of visiting Professor.The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP#0089.Rungtiwa Phookamsak thanks CAS President’s International Fellowship Initiative(PIFI)for young staff(Grant No.Y9215811Q1)the Yunnan Provincial Department of Human Resources and Social Security(Grant No.Y836181261)National Science Foundation of China(NSFC)Project Code 31850410489(Grant No.Y81I982211)for financial support.Dr.Shaun Pennycook and Prof Eric H.C.McKenzie are thanked for his essential nomenclatural reviewRajesh Jeewon thanks Mae Fah Luang University for the award of a Visiting Scholar and University of Mauritius for research support.Jian-Kui Liu thanks the National Natural Science Foundation of China(NSFC 31600032)Chaynard Phukhamsakda would like to thank the Royal Golden Jubilee PhD Program under Thailand Research Fund(RGJ)for a personal grant to C.Phukhamsakda(The Scholarship No.PHD/0020/2557 to study towards a Ph.D.).This research work was partially supported by Chiang Mai University.Ausana Mapook thanks to Research and Researchers for Industries(RRI)under Thailand Research Fund for a personal Grant(PHD57I0012)with the German Academic Exchange Service(DAAD)for a joint TRF-DAAD(PPP 2017-2018)academic exchange grant to K.D.Hyde and M.Stadler.Witoon Purahong and Tesfaye Wubet are thanked for funding support of Molecular work and also thanks to Katalee Jariyavidyanont,Maitree Malaithong and Benjawan Tanunchai for their valuable help.Saowaluck Tibpromma would like to thank the International Postdoctoral Exchange Fellowship Program(Number Y9180822S1)CAS President’s International Fellowship Initiative(PIFI)(Number 2020PC0009)China Postdoctoral Science Foundation and Yunnan Human Resources and Social Security Department Foundation for funding her postdoctoral research.V.V.Sarma would like to thank SERB,Department of Science and Technology,Government of India,for funding a project(SERB/SB/SO/PS/18/2014 dt.19.5.2015)and Ministry of Earth Sciences(MOES),Govt.of India for funding a project(Sanction order:MOES/36/OO1S/Extra/40/2014/PC-IV dt.14.01.2015)the Department of Biotechnology,Pondicherry University for facilitiesforest departments of Andaman and Nicobar Islands and Tamil Nadu,India are thanked for providing permission to collect samples.M.Niranjan thanks SERB,Govt.of India for a fellowship and B.Devadatha thanks MOES,Govt.of India for a fellowship.Napalai Chaiwan would like to thank the Thailand Research Fund(PHD60K0147)Danushka S.Tennakoon would like to thank Lakmali Dissanayake and Binu Samarakoon for their support.Dhanushka N.Wanasinghe would like to thank CAS President’s International Fellowship Initiative(PIFI)for funding his postdoctoral research(Number 2019PC0008)Peter E.Mortimer and Dhanushka N.Wanasinghe thank the National Science Foundation of China and the Chinese Academy of Sciences for financial support under the following Grants:41761144055,41771063 and Y4ZK111B01.Mingkwan Doilom would like to thank the 5th batch of Postdoctoral Orientation Training Personnel in Yunnan Province(grant no.:Y934283261)the 64th batch of China Postdoctoral Science Foundation(grant no.:Y913082271).Amanda Lucia Alves acknowledges scholarships from the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior(CAPES),Ana Carla da Silva Santos acknowledges scholarships from the Conselho Nacional de Pesquisa(CNPq)and Patricia Vieira Tiago acknowledges financial support from the Pro-Reitoria de Pesquisa e Pos-Graduacao(Propesq).Dan-Feng Bao thanks Dr.Zong-Long Luo and Prof.Dr.Hong-Yan Su for their available suggestions on fungal taxonomy as well as providing partial financial research support.Shi-Ke Huang thanks Prof.Dr.Ting-Chi Wen for partially support on research study.Danny Haelewaters was funded for fieldwork in Panama by the David Rockefeller Center for Latin American Studies(2017 Summer Research Travel Grant),Smithsonian Tropical Research Institute(2017 Short-Term Research Fellowship),Mycological Society of America(2016 Graduate Research Fellowship,2017 Robert W.Lichtwardt Award),and through the Harvard University Herbaria(Fernald Fund).D.Haelewaters thanks W.Owen McMillan(Smithsonian Tropical Research Institute,Panama)and Edilma Gomez(Molecular Multi-User’s Lab,Panama)for providing lab space at STRI.Walter P.Pfliegler and EnikőHorvath are deeply indebted to Matthias Sipiczki(University of Debrecen,Hungary)for his support for generations of yeasts researchers,as well as to Ida Miklos(University of Debrecen,Hungary)for a continuous support for yeast studies and to Anita Csabaine Olah(University of Debrecen,Hungary)for excellent technical support.Alexandra Imre was supported by the UNKP-19-3-I-234 New National Excellence Program of the Ministry of Human Capacities of Hungary.Walter P.Pfliegler,EnikőHorvath,and Alexandra Imre are deeply thankful to Gabor Peter for his comments on yeast taxonomy.Walter P.Pfliegler was supported by the Albert Szent-Gyorgyi Young Investigator Award.Kunhiraman C.Rajeshkumar thanks SERB,Department of Science and Technology,Government of India for providing financial support under the Project YSS/2015/001590 and Dr.Prashant K.Dhakephalkar,Director,Agharkar Research Institute for providing the facility.Sanjay K.Singh and Shiv Mohan Singh thank Dr.Prashant K.Dhakephalkar,Director,Agharkar Research Institute and Head,Department of Botany,Banaras Hindu University(BHU),Varanasi(UP)for providing necessary facilities.Shiwali Rana thanks SP Pune University and UGC New Delhi for Fellowship(JRF).Kunthida Phutthacharoen would like to thank the Royal Golden Jubilee PhD Program under Thailand Research Fund(RGJ)No.PHD/0002/2560.Saranyaphat Boonmee would like to thank the Thailand Research Fund(No.TRG6180001)and Plant Genetic Conservation Project under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sirindhorn-Mae Fah Luang University.Qi Zhao and Ming Zeng are supported by the open research project of“Cross-Cooperative Team”of the Germplasm Bank of Wild Species,Kunming Institute of Botany,Chinese Academy of Science,and The Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment,China(2019HJ2096001006)Subodini N.Wijesinghe offers her profound gratitude to Dr.Samantha C.Karunarathne for financial support on molecular work under the National Science Foundation of China(NSFC)Project Code:31750110478 as well as Prof.Dr.Yong Wang,Dr.Udeni Jayalal and Achala R.Rathnayaka for their valuable suggestions.Renato Lucio Mendes Alvarenga and Tatiana Baptista Gibertoni acknowledge Ailton Matheus for the specimen,Pos-Graduacao em Biologia de Fungos(UFPE,Brazil)for support,CNPq(PQ 307601/2015-3)for financing this research and CAPES and CNPq for the PhD scholarship of RLM Alvarenga.Wei Dong would like to thank Huang Zhang for supporting this work under the National Natural Science Foundation of China(Project ID:NSF 31500017).Jing Yang would like to thank Prof.Zuoyi Liu for his support and great help on the lab work.
文摘Fungal diversity notes is one of the important journal series of fungal taxonomy that provide detailed descriptions and illustrations of new fungal taxa,as well as providing new information of fungal taxa worldwide.This article is the 11th contribution to the fungal diversity notes series,in which 126 taxa distributed in two phyla,six classes,24 orders and 55 families are described and illustrated.Taxa in this study were mainly collected from Italy by Erio Camporesi and also collected from China,India and Thailand,as well as in some other European,North American and South American countries.Taxa described in the present study include two new families,12 new genera,82 new species,five new combinations and 25 new records on new hosts and new geographical distributions as well as sexual-asexual reports.The two new families are Eriomycetaceae(Dothideomycetes,family incertae sedis)and Fasciatisporaceae(Xylariales,Sordariomycetes).The twelve new genera comprise Bhagirathimyces(Phaeosphaeriaceae),Camporesiomyces(Tubeufiaceae),Eriocamporesia(Cryphonectriaceae),Eriomyces(Eriomycetaceae),Neomonodictys(Pleurotheciaceae),Paraloratospora(Phaeosphaeriaceae),Paramonodictys(Parabambusicolaceae),Pseudoconlarium(Diaporthomycetidae,genus incertae sedis),Pseudomurilentithecium(Lentitheciaceae),Setoapiospora(Muyocopronaceae),Srinivasanomyces(Vibrisseaceae)and Xenoanthostomella(Xylariales,genera incertae sedis).The 82 new species comprise Acremonium chiangraiense,Adustochaete nivea,Angustimassarina camporesii,Bhagirathimyces himalayensis,Brunneoclavispora camporesii,Camarosporidiella camporesii,Camporesiomyces mali,Camposporium appendiculatum,Camposporium multiseptatum,Camposporium septatum,Canalisporium aquaticium,Clonostachys eriocamporesiana,Clonostachys eriocamporesii,Colletotrichum hederiicola,Coniochaeta vineae,Conioscypha verrucosa,Cortinarius ainsworthii,Cortinarius aurae,Cortinarius britannicus,Cortinarius heatherae,Cortinarius scoticus,Cortinarius subsaniosus,Cytospora fusispora,Cytospora rosigena,Diaporthe camporesii,Diaporthe nigra,Diatrypella yunnanensis,Dictyosporium muriformis,Didymella camporesii,Diutina bernali,Diutina sipiczkii,Eriocamporesia aurantia,Eriomyces heveae,Ernakulamia tanakae,Falciformispora uttaraditensis,Fasciatispora cocoes,Foliophoma camporesii,Fuscostagonospora camporesii,Helvella subtinta,Kalmusia erioi,Keissleriella camporesiana,Keissleriella camporesii,Lanspora cylindrospora,Loratospora arezzoensis,Mariannaea atlantica,Melanographium phoenicis,Montagnula camporesii,Neodidymelliopsis camporesii,Neokalmusia kunmingensis,Neoleptosporella camporesiana,Neomonodictys muriformis,Neomyrmecridium guizhouense,Neosetophoma camporesii,Paraloratospora camporesii,Paramonodictys solitarius,Periconia palmicola,Plenodomus triseptatus,Pseudocamarosporium camporesii,Pseudocercospora maetaengensis,Pseudochaetosphaeronema kunmingense,Pseudoconlarium punctiforme,Pseudodactylaria camporesiana,Pseudomurilentithecium camporesii,Pseudotetraploa rajmachiensis,Pseudotruncatella camporesii,Rhexocercosporidium senecionis,Rhytidhysteron camporesii,Rhytidhysteron erioi,Septoriella camporesii,Setoapiospora thailandica,Srinivasanomyces kangrensis,Tetraploa dwibahubeeja,Tetraploa pseudoaristata,Tetraploa thrayabahubeeja,Torula camporesii,Tremateia camporesii,Tremateia lamiacearum,Uzbekistanica pruni,Verruconis mangrovei,Wilcoxina verruculosa,Xenoanthostomella chromolaenae and Xenodidymella camporesii.The five new combinations are Camporesiomyces patagoniensis,Camporesiomyces vaccinia,Camposporium lycopodiellae,Paraloratospora gahniae and Rhexocercosporidium microsporum.The 22 new records on host and geographical distribution comprise Arthrinium marii,Ascochyta medicaginicola,Ascochyta pisi,Astrocystis bambusicola,Camposporium pellucidum,Dendryphiella phitsanulokensis,Diaporthe foeniculina,Didymella macrostoma,Diplodia mutila,Diplodia seriata,Heterosphaeria patella,Hysterobrevium constrictum,Neodidymelliopsis ranunculi,Neovaginatispora fuckelii,Nothophoma quercina,Occultibambusa bambusae,Phaeosphaeria chinensis,Pseudopestalotiopsis theae,Pyxine berteriana,Tetraploa sasicola,Torula gaodangensis and Wojnowiciella dactylidis.In addition,the sexual morphs of Dissoconium eucalypti and Phaeosphaeriopsis pseudoagavacearum are reported from Laurus nobilis and Yucca gloriosa in Italy,respectively.The holomorph of Diaporthe cynaroidis is also reported for the first time.