Wearable thermoelectric devices hold significant promise in the realm of self-powered wearable electron-ics,offering applications in energy harvesting,movement tracking,and health monitoring.Nevertheless,developing th...Wearable thermoelectric devices hold significant promise in the realm of self-powered wearable electron-ics,offering applications in energy harvesting,movement tracking,and health monitoring.Nevertheless,developing thermoelectric devices with exceptional flexibility,enduring thermoelectric stability,multi-functional sensing,and comfortable wear remains a challenge.In this work,a stretchable MXene-based thermoelectric fabric is designed to accurately discern temperature and strain stimuli.This is achieved by constructing an adhesive polydopamine(PDA)layer on the nylon fabric surface,which facilitates the subsequent MXene attachment through hydrogen bonding.This fusion results in MXene-based thermo-electric fabric that excels in both temperature sensing and strain sensing.The resultant MXene-based thermoelectric fabric exhibits outstanding temperature detection capability and cyclic stability,while also delivering excellent sensitivity,rapid responsiveness(60 ms),and remarkable durability in strain sens-ing(3200 cycles).Moreover,when affixed to a mask,this MXene-based thermoelectric fabric utilizes the temperature difference between the body and the environment to harness body heat,converting it into electrical energy and accurately discerning the body’s respiratory rate.In addition,the MXene-based ther-moelectric fabric can monitor the state of the body’s joint through its own deformation.Furthermore,it possesses the capability to convert solar energy into heat.These findings indicate that MXene-based ther-moelectric fabric holds great promise for applications in power generation,motion tracking,and health monitoring.展开更多
The substantial influences of Mo contents varying from 0 to 0.26 and 0.50 wt.%on the microstructural evolution and MX(M=Nb,V and Mo;X=C and N)precipitation characteristics of Nb–V–N microalloyed steels processed by ...The substantial influences of Mo contents varying from 0 to 0.26 and 0.50 wt.%on the microstructural evolution and MX(M=Nb,V and Mo;X=C and N)precipitation characteristics of Nb–V–N microalloyed steels processed by hot deformation and continuous cooling were studied using a Gleeble 3800 thermomechanical simulator.Metallographic analysis showed that the ferrite microstructure transformed from polygonal ferrite(PF)in 0Mo steel to both acicular ferrite(AF)and PF in 0.26Mo and 0.50Mo steels,and AF content first increased and then decreased.The thermodynamic calculations and the experimental results proved that the quantity of solid solution of Mo in austenite obviously increased,which reduced the austenite(γ)to ferrite(α)transformation temperature,consequently promoting AF formation in 0.26Mo steel and bainite transformation in 0.50Mo steel.Moreover,the submicron Nb-rich MX particles that precipitated at the temperature of the austenite region further induced AF heterogeneous nucleation with an orientation relationship of(100)_(MX)//(100)_(Ferrite)and[■][001]Ferrite.The interphase precipitation of the nanosized V-rich MX particles with Mo partitioning that precipitated duringγ→αtransformation exhibited a Baker–Nutting orientation relationship of(100)_(MX)//(100)Ferrite and[001]_(MX)//[■]_(Ferrite)with respect to the ferrite matrix.With increasing Mo content from 0 to 0.26 and 0.50 wt.%,the sheet spacing decreased from 46.9–49.0 to 34.6–38.6 and 25.7–28.0 nm,respectively,which evidently hindered dislocation movement and greatly enhanced precipitation strengthening.Furthermore,facilitating AF formation and interphase precipitation was beneficial to improving steel properties,and the optimal Mo content was 0.26 wt.%.展开更多
The effect of high welding heat inputs in the range of 50–200 kJ/cm on the microstructural evolution,MX(M=Ti,Nb and V;X=N and C)precipitation and mechanical properties was investigated in the coarse-grained heat-affe...The effect of high welding heat inputs in the range of 50–200 kJ/cm on the microstructural evolution,MX(M=Ti,Nb and V;X=N and C)precipitation and mechanical properties was investigated in the coarse-grained heat-affected zone(CGHAZ)of a high-Nb(0.10 wt.%)structural steel.The results showed that the primary microconstituents varied from lath bainite(LB)to intragranular acicular ferrite(IAF)+intragranular polygonal ferrite(IPF),and the most content of IAF was acquired at 100 kJ/cm.Moreover,the submicron Ti-and Nb-rich MX precipitates not only pinned prior austenite grain boundaries but also facilitated IAF and IPF nucleation with the Kurdjumov–Sachs orientation relationship of[011]_(MX)//[111]_(Ferrite);the nanoscale V-rich MX precipitates hindered dislocation movement and followed the Baker–Nutting orientation relationship of[001]_(MX)//[001]_(Ferrite)with ferrite matrix,synergistically strengthening and toughening the CGHAZ.In addition,the−20℃impact absorbed energy firstly elevated from 93±5.2 J at 50 kJ/cm to 131±5.4 J at 100 kJ/cm and finally decreased to 59±3.0 J at 200 kJ/cm,being related to the IAF content,while the microhardness decreased from 312±26.1 to 269±12.9 HV0.1,because of the coarsened microstructure and the decreased content of LB and martensite.Compared to the CGHAZ properties with 0.05 wt.%Nb,a higher Nb content produced better low-temperature toughness,as more solid dissolved Nb atoms and precipitated Nb-rich MX particles in austenite limited prior austenite grain growth and promoted IAF formation.Furthermore,the welding process at 100 kJ/cm was most applicable for the high-Nb steel.展开更多
The development and utilization of mineral resources are accompanied by the production of a large number of solid wastes such as tailings and smelting slag.Bayan Obo tailings and blast furnace slag were used as the ma...The development and utilization of mineral resources are accompanied by the production of a large number of solid wastes such as tailings and smelting slag.Bayan Obo tailings and blast furnace slag were used as the main raw materials.Coal gangue was used as pore-forming agent to prepare ceramsite which can efficiently treat ammonia nitrogen wastewater.The optimum preparation process parameters were obtained.The mineral evolution process of ceramsite prepared by smelting solid waste during roasting was clarified.The effects of sintering process parameters on the properties of ceramsite and its removal of ammonia nitrogen wastewater were revealed.The results show that,the optimum proportion of raw materials for preparing ceramsite was:25%Bayan Obo tailings,65%blast furnace slag and 10%coal gangue.The reasonable process for preparing ceramsite was:temperature of 400℃,preheating for 20 min,heating rate of 10℃/min,calcination at 1090℃for 15 min,and cooling with the furnace.With the increase in calcination temperature,the main crystal phase changes from dolomite,kaolinite,fluorite and calcite to melilite and Fe2O3.Finally,the ceramsite with porosity of 48.13%,specific surface area of 2.44 m^(2)/g and soluble rate of hydrochloric acid of 1.88%was prepared.The removal rate of ammonia nitrogen wastewater by the ceramsite was 54.13%.展开更多
To separate the phosphorus-containing phase from steel slag,the effects of B_(2)O_(3)and Na_(2)B_(4)O_(7)on the enrichment of phosphorus-containing phases in Ca_(2)SiO_(4)–Ca_(3)(PO_(4))_(2)(C_(2)S–C_(3)P)solid solu...To separate the phosphorus-containing phase from steel slag,the effects of B_(2)O_(3)and Na_(2)B_(4)O_(7)on the enrichment of phosphorus-containing phases in Ca_(2)SiO_(4)–Ca_(3)(PO_(4))_(2)(C_(2)S–C_(3)P)solid solution were comparatively analyzed through theoretical calculations and experimental investigations.The results indicate that the optimum reaction temperature between B_(2)O_(3)and C_(2)S–C_(3)P is 800℃.The phase compositions of C_(2)S–C_(3)P equilibrium system with 5 wt.%B_(2)O_(3)at 800℃ included Ca_(3)(PO_(4))_(2),CaSiO_(3)and Ca11B_(2)Si_(4)O_(22),among which the content of Ca_(3)(PO_(4))_(2)was the highest.For C_(2)S–C_(3)P with 5 wt.%Na_(2)B_(4)O_(7)equilibrium system,Ca_(3)(PO_(4))_(2),CaSiO_(3),Ca11B_(2)Si_(4)O_(22)and Na_(2)Ca_(2)P_(2)O_(8)were independent at 390–690℃.Ca_(3)(PO_(4))_(2)and Ca_(2)SiO_(4)precipitated in the solid solution when the addition of B_(2)O_(3)was more than 6 wt.%,and the content of Ca_(3)(PO_(4))_(2)raised with the increase in the addition of B_(2)O_(3).The main phases in the C_(2)S–C_(3)P solid solution with Na_(2)B_(4)O_(7)were(Ca_(2)SiO_(4))0.05[Ca_(3)(PO_(4))_(2)],Ca_(2)SiO_(4)and Na_(3)Ca_(6)(PO_(4))_(5)at 650℃.And when the addition of Na_(2)B_(4)O_(7)exceeded 6 wt.%,the content of Na_(3)Ca_(6)(PO_(4))_(5)increased significantly.There was no precipitation of Ca_(3)(PO_(4))_(2)or boron-containing phase in the samples with Na_(2)B_(4)O_(7),but a small proportion of Ca_(3)(PO_(4))_(2)transformed into(Ca_(2)SiO_(4))0.05[Ca_(3)(PO_(4))_(2)],and Ca^(2+)was partially replaced by Na^(+)to generate Na_(3)Ca_(6)(PO_(4))_(5).As a result,the temperature for Na_(2)B_(4)O_(7)to enrich the phosphorus-containing phase in C_(2)S–C_(3)P solid solution was lower than that for B_(2)O_(3).However,the grade of the phosphorus-containing phase for Na_(2)B_(4)O_(7)was lower than that for B_(2)O_(3).展开更多
The significant effect of MgO in inhibiting the reduction swelling of iron ore pellets has been widely recognized.The swelling behaviors of pellets during the stepwise reduction by CO were assessed.The linear expansio...The significant effect of MgO in inhibiting the reduction swelling of iron ore pellets has been widely recognized.The swelling behaviors of pellets during the stepwise reduction by CO were assessed.The linear expansion of strip samples was measured using a linear dilatometer during the staged reduction process at a temperature of 900℃.The existence states of MgO in hematite,magnetite,and wüstite were investigated through thermodynamic calculations.The magnetite strip samples were subjected to oxidizing roasting at 1250℃ for 30 min to produce hematite strip samples.The strip samples with 0.49,1.49,2.49,and 3.49 wt.%MgO were analyzed for length change.It was observed that the sample with 2.49 wt.%MgO exhibited the least significant length change.The lengths of the samples with the initial length being 20 mm before reduction changed during the reduction stages of Fe_(2)O_(3)→Fe_(3)O_(4),Fe_(3)O_(4)→FeO,and FeO→Fe were 615,−25,and−378μm,respectively.The volume expansion of hematite to magnetite was primarily attributed to the crystal transformation.During the reduction stage from wüstite to metallic iron,a substantial contraction occurred,while the slag phase was able to retain its original basic shape.The enclosed areas,as indicated by the expansion change curves of the samples with 0.49,1.49,2.49,and 3.49 wt.%MgO,were measured at 3.76×10^(6),3.23×10^(6),3.05×10^(6),and 3.17×10^(6)μm s,respectively.展开更多
The replacement of non-aqueous organic electrolytes with solid-state electrolytes(SSEs)in solid-state lithium metal batteries(SLMBs)is considered a promising strategy to address the constraints of lithium-ion batterie...The replacement of non-aqueous organic electrolytes with solid-state electrolytes(SSEs)in solid-state lithium metal batteries(SLMBs)is considered a promising strategy to address the constraints of lithium-ion batteries,especially in terms of energy density and reliability.Nevertheless,few SLMBs can deliver the required cycling performance and long-term stability for practical use,primarily due to suboptimal interface properties.Given the diverse solidification pathways leading to different interface characteristics,it is crucial to pinpoint the source of interface deterioration and develop appropriate remedies.This review focuses on Li|SSE interface issues between lithium metal anode and SSE,discussing recent advancements in the understanding of(electro)chemistry,the impact of defects,and interface evolutions that vary among different SSE species.The state-ofthe-art strategies concerning modified SEI,artificial interlayer,surface architecture,and composite structure are summarized and delved into the internal relationships between interface characteristics and performance enhancements.The current challenges and opportunities in characterizing and modifying the Li|SSE interface are suggested as potential directions for achieving practical SLMBs.展开更多
基金supported by the National Natural Science Foundation of China(No.21975107)the China Scholarship Council(No.202206790046).
文摘Wearable thermoelectric devices hold significant promise in the realm of self-powered wearable electron-ics,offering applications in energy harvesting,movement tracking,and health monitoring.Nevertheless,developing thermoelectric devices with exceptional flexibility,enduring thermoelectric stability,multi-functional sensing,and comfortable wear remains a challenge.In this work,a stretchable MXene-based thermoelectric fabric is designed to accurately discern temperature and strain stimuli.This is achieved by constructing an adhesive polydopamine(PDA)layer on the nylon fabric surface,which facilitates the subsequent MXene attachment through hydrogen bonding.This fusion results in MXene-based thermo-electric fabric that excels in both temperature sensing and strain sensing.The resultant MXene-based thermoelectric fabric exhibits outstanding temperature detection capability and cyclic stability,while also delivering excellent sensitivity,rapid responsiveness(60 ms),and remarkable durability in strain sens-ing(3200 cycles).Moreover,when affixed to a mask,this MXene-based thermoelectric fabric utilizes the temperature difference between the body and the environment to harness body heat,converting it into electrical energy and accurately discerning the body’s respiratory rate.In addition,the MXene-based ther-moelectric fabric can monitor the state of the body’s joint through its own deformation.Furthermore,it possesses the capability to convert solar energy into heat.These findings indicate that MXene-based ther-moelectric fabric holds great promise for applications in power generation,motion tracking,and health monitoring.
基金supported by the National Natural Science Foundation of China(Grant No.52104333)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(Grant No.NJYT24070)+1 种基金the Natural Science Foundation of Inner Mongolia(Grant No.2024MS05029)the Research Project of Carbon Peak and Carbon Neutrality in Universities of Inner Mongolia Autonomous Region(Grant No.STZX202316).
文摘The substantial influences of Mo contents varying from 0 to 0.26 and 0.50 wt.%on the microstructural evolution and MX(M=Nb,V and Mo;X=C and N)precipitation characteristics of Nb–V–N microalloyed steels processed by hot deformation and continuous cooling were studied using a Gleeble 3800 thermomechanical simulator.Metallographic analysis showed that the ferrite microstructure transformed from polygonal ferrite(PF)in 0Mo steel to both acicular ferrite(AF)and PF in 0.26Mo and 0.50Mo steels,and AF content first increased and then decreased.The thermodynamic calculations and the experimental results proved that the quantity of solid solution of Mo in austenite obviously increased,which reduced the austenite(γ)to ferrite(α)transformation temperature,consequently promoting AF formation in 0.26Mo steel and bainite transformation in 0.50Mo steel.Moreover,the submicron Nb-rich MX particles that precipitated at the temperature of the austenite region further induced AF heterogeneous nucleation with an orientation relationship of(100)_(MX)//(100)_(Ferrite)and[■][001]Ferrite.The interphase precipitation of the nanosized V-rich MX particles with Mo partitioning that precipitated duringγ→αtransformation exhibited a Baker–Nutting orientation relationship of(100)_(MX)//(100)Ferrite and[001]_(MX)//[■]_(Ferrite)with respect to the ferrite matrix.With increasing Mo content from 0 to 0.26 and 0.50 wt.%,the sheet spacing decreased from 46.9–49.0 to 34.6–38.6 and 25.7–28.0 nm,respectively,which evidently hindered dislocation movement and greatly enhanced precipitation strengthening.Furthermore,facilitating AF formation and interphase precipitation was beneficial to improving steel properties,and the optimal Mo content was 0.26 wt.%.
基金financially supported by the National Natural Science Foundation of China(Grant No.52104333)the Natural Science Foundation of Inner Mongolia(Grant No.2024MS05029)+1 种基金the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(Grant No.NJYT24070)the Research Project of Carbon Peak and Carbon Neutrality in Universities of Inner Mongolia Autonomous Region(Grant No.STZX202316).
文摘The effect of high welding heat inputs in the range of 50–200 kJ/cm on the microstructural evolution,MX(M=Ti,Nb and V;X=N and C)precipitation and mechanical properties was investigated in the coarse-grained heat-affected zone(CGHAZ)of a high-Nb(0.10 wt.%)structural steel.The results showed that the primary microconstituents varied from lath bainite(LB)to intragranular acicular ferrite(IAF)+intragranular polygonal ferrite(IPF),and the most content of IAF was acquired at 100 kJ/cm.Moreover,the submicron Ti-and Nb-rich MX precipitates not only pinned prior austenite grain boundaries but also facilitated IAF and IPF nucleation with the Kurdjumov–Sachs orientation relationship of[011]_(MX)//[111]_(Ferrite);the nanoscale V-rich MX precipitates hindered dislocation movement and followed the Baker–Nutting orientation relationship of[001]_(MX)//[001]_(Ferrite)with ferrite matrix,synergistically strengthening and toughening the CGHAZ.In addition,the−20℃impact absorbed energy firstly elevated from 93±5.2 J at 50 kJ/cm to 131±5.4 J at 100 kJ/cm and finally decreased to 59±3.0 J at 200 kJ/cm,being related to the IAF content,while the microhardness decreased from 312±26.1 to 269±12.9 HV0.1,because of the coarsened microstructure and the decreased content of LB and martensite.Compared to the CGHAZ properties with 0.05 wt.%Nb,a higher Nb content produced better low-temperature toughness,as more solid dissolved Nb atoms and precipitated Nb-rich MX particles in austenite limited prior austenite grain growth and promoted IAF formation.Furthermore,the welding process at 100 kJ/cm was most applicable for the high-Nb steel.
基金supported by the National Key Research and Development Program of China(Nos.2020YFC1909100 and 2020YFC1909105)the Major Science and Technology Project of lnner Mongolia Autonomous Region(No.2021ZD0016)+1 种基金the Program for Young Talents of Science and Technology in Universities of lnner Mongolia Autonomous Region(No.NJYT22060)the Fundamental Research Funds for Inner Mongolia University of Science&Technology(Nos.2022QNJS011 and 2023YXXS006).
文摘The development and utilization of mineral resources are accompanied by the production of a large number of solid wastes such as tailings and smelting slag.Bayan Obo tailings and blast furnace slag were used as the main raw materials.Coal gangue was used as pore-forming agent to prepare ceramsite which can efficiently treat ammonia nitrogen wastewater.The optimum preparation process parameters were obtained.The mineral evolution process of ceramsite prepared by smelting solid waste during roasting was clarified.The effects of sintering process parameters on the properties of ceramsite and its removal of ammonia nitrogen wastewater were revealed.The results show that,the optimum proportion of raw materials for preparing ceramsite was:25%Bayan Obo tailings,65%blast furnace slag and 10%coal gangue.The reasonable process for preparing ceramsite was:temperature of 400℃,preheating for 20 min,heating rate of 10℃/min,calcination at 1090℃for 15 min,and cooling with the furnace.With the increase in calcination temperature,the main crystal phase changes from dolomite,kaolinite,fluorite and calcite to melilite and Fe2O3.Finally,the ceramsite with porosity of 48.13%,specific surface area of 2.44 m^(2)/g and soluble rate of hydrochloric acid of 1.88%was prepared.The removal rate of ammonia nitrogen wastewater by the ceramsite was 54.13%.
基金funding support from the National Key R&D Program of China(2020YFC1909105)the 2023 Basic Research Foundation Project for Universities in the Inner Mongolia Autonomous Region(2023RCTD006)+1 种基金the Major Science and Technology Project of Inner Mongolia Autonomous Region(2021ZD0016)the National Natural Science Foundation of China(51664044).
文摘To separate the phosphorus-containing phase from steel slag,the effects of B_(2)O_(3)and Na_(2)B_(4)O_(7)on the enrichment of phosphorus-containing phases in Ca_(2)SiO_(4)–Ca_(3)(PO_(4))_(2)(C_(2)S–C_(3)P)solid solution were comparatively analyzed through theoretical calculations and experimental investigations.The results indicate that the optimum reaction temperature between B_(2)O_(3)and C_(2)S–C_(3)P is 800℃.The phase compositions of C_(2)S–C_(3)P equilibrium system with 5 wt.%B_(2)O_(3)at 800℃ included Ca_(3)(PO_(4))_(2),CaSiO_(3)and Ca11B_(2)Si_(4)O_(22),among which the content of Ca_(3)(PO_(4))_(2)was the highest.For C_(2)S–C_(3)P with 5 wt.%Na_(2)B_(4)O_(7)equilibrium system,Ca_(3)(PO_(4))_(2),CaSiO_(3),Ca11B_(2)Si_(4)O_(22)and Na_(2)Ca_(2)P_(2)O_(8)were independent at 390–690℃.Ca_(3)(PO_(4))_(2)and Ca_(2)SiO_(4)precipitated in the solid solution when the addition of B_(2)O_(3)was more than 6 wt.%,and the content of Ca_(3)(PO_(4))_(2)raised with the increase in the addition of B_(2)O_(3).The main phases in the C_(2)S–C_(3)P solid solution with Na_(2)B_(4)O_(7)were(Ca_(2)SiO_(4))0.05[Ca_(3)(PO_(4))_(2)],Ca_(2)SiO_(4)and Na_(3)Ca_(6)(PO_(4))_(5)at 650℃.And when the addition of Na_(2)B_(4)O_(7)exceeded 6 wt.%,the content of Na_(3)Ca_(6)(PO_(4))_(5)increased significantly.There was no precipitation of Ca_(3)(PO_(4))_(2)or boron-containing phase in the samples with Na_(2)B_(4)O_(7),but a small proportion of Ca_(3)(PO_(4))_(2)transformed into(Ca_(2)SiO_(4))0.05[Ca_(3)(PO_(4))_(2)],and Ca^(2+)was partially replaced by Na^(+)to generate Na_(3)Ca_(6)(PO_(4))_(5).As a result,the temperature for Na_(2)B_(4)O_(7)to enrich the phosphorus-containing phase in C_(2)S–C_(3)P solid solution was lower than that for B_(2)O_(3).However,the grade of the phosphorus-containing phase for Na_(2)B_(4)O_(7)was lower than that for B_(2)O_(3).
基金support from the 2023 Basic Research Foundation Project for Universities in the Inner Mongolia Autonomous Region(Grant No.2023RCTD006)the National Natural Science Foundation of China(Grant No.51864041,51664044).
文摘The significant effect of MgO in inhibiting the reduction swelling of iron ore pellets has been widely recognized.The swelling behaviors of pellets during the stepwise reduction by CO were assessed.The linear expansion of strip samples was measured using a linear dilatometer during the staged reduction process at a temperature of 900℃.The existence states of MgO in hematite,magnetite,and wüstite were investigated through thermodynamic calculations.The magnetite strip samples were subjected to oxidizing roasting at 1250℃ for 30 min to produce hematite strip samples.The strip samples with 0.49,1.49,2.49,and 3.49 wt.%MgO were analyzed for length change.It was observed that the sample with 2.49 wt.%MgO exhibited the least significant length change.The lengths of the samples with the initial length being 20 mm before reduction changed during the reduction stages of Fe_(2)O_(3)→Fe_(3)O_(4),Fe_(3)O_(4)→FeO,and FeO→Fe were 615,−25,and−378μm,respectively.The volume expansion of hematite to magnetite was primarily attributed to the crystal transformation.During the reduction stage from wüstite to metallic iron,a substantial contraction occurred,while the slag phase was able to retain its original basic shape.The enclosed areas,as indicated by the expansion change curves of the samples with 0.49,1.49,2.49,and 3.49 wt.%MgO,were measured at 3.76×10^(6),3.23×10^(6),3.05×10^(6),and 3.17×10^(6)μm s,respectively.
基金Financial support from National Key R&D Program(2022YFB2404600)Natural Science Foundation of China(Key Project of 52131306)+1 种基金Project on Carbon Emission Peak and Neutrality of Jiangsu Province(BE2022031-4)the Big Data Computing Center of Southeast University are greatly appreciated.
文摘The replacement of non-aqueous organic electrolytes with solid-state electrolytes(SSEs)in solid-state lithium metal batteries(SLMBs)is considered a promising strategy to address the constraints of lithium-ion batteries,especially in terms of energy density and reliability.Nevertheless,few SLMBs can deliver the required cycling performance and long-term stability for practical use,primarily due to suboptimal interface properties.Given the diverse solidification pathways leading to different interface characteristics,it is crucial to pinpoint the source of interface deterioration and develop appropriate remedies.This review focuses on Li|SSE interface issues between lithium metal anode and SSE,discussing recent advancements in the understanding of(electro)chemistry,the impact of defects,and interface evolutions that vary among different SSE species.The state-ofthe-art strategies concerning modified SEI,artificial interlayer,surface architecture,and composite structure are summarized and delved into the internal relationships between interface characteristics and performance enhancements.The current challenges and opportunities in characterizing and modifying the Li|SSE interface are suggested as potential directions for achieving practical SLMBs.