Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological cond...Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological conditions,including stroke,head trauma,and neurodegenerative disease,can generate stress in neurons,affecting their survival and proper function.In most neural pathologies,mitochondria become dysfunctional and this plays a pivotal role in the process of cell death.The challenge over the last few decades has been to develop effective interventions that improve neuronal homeostasis under pathological conditions.Such interventions,often referred to as disease-modifying or neuroprotective,have,however,proved frustratingly elusive,at both preclinical and,in particular,clinical levels.In this perspective,we highlight two factors that we feel are key to the development of effective neuroprotective treatments.These are:firstly,the choice of dose of intervention and method of application,and secondly,the selection of subjects,whether they be patients or the animal model.展开更多
The incidence of intractable age-related neurodegenerative conditions such as Alzheimer's and Parkinson's diseases and age-related macular degeneration is projected to increase substantially over the coming decades ...The incidence of intractable age-related neurodegenerative conditions such as Alzheimer's and Parkinson's diseases and age-related macular degeneration is projected to increase substantially over the coming decades with the ageing of the global population. While the burden of disease associ- ated with other chronic conditions has decreased in recent times due to improved diagnosis and treatment, current therapies for neurodegenerative diseases still fall short in that they are only effective in treating signs and symptoms - they do little to slow or prevent disease progress. Thus, there is an urgent need for treatments that address disease progression.展开更多
A great challenge in neuroscience has been to understand how neurons communicate.The neuroanatomists of the 19th Century could see neurons stretching processes to contact other neurons,but could not see the detail of ...A great challenge in neuroscience has been to understand how neurons communicate.The neuroanatomists of the 19th Century could see neurons stretching processes to contact other neurons,but could not see the detail of the contact.Many thought that neurons formed a syncytium,with continuity of membranes from one to the next.Over the ensuing two hundred years or so,we have come to understand that the circuity of the brain is not formed by a syncytium of neurons;rather,individual neurons communicate with each other with a range of biological signals.Neurons are highly active cells,with their activity being electrical and their communication being either chemical,electrical or gaseous.展开更多
基金supported by Fonds Clinatec and COVEA France(to JM).
文摘Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological conditions,including stroke,head trauma,and neurodegenerative disease,can generate stress in neurons,affecting their survival and proper function.In most neural pathologies,mitochondria become dysfunctional and this plays a pivotal role in the process of cell death.The challenge over the last few decades has been to develop effective interventions that improve neuronal homeostasis under pathological conditions.Such interventions,often referred to as disease-modifying or neuroprotective,have,however,proved frustratingly elusive,at both preclinical and,in particular,clinical levels.In this perspective,we highlight two factors that we feel are key to the development of effective neuroprotective treatments.These are:firstly,the choice of dose of intervention and method of application,and secondly,the selection of subjects,whether they be patients or the animal model.
基金supported by Sydney Medical School,Brain Foundation,Tenix Corporation and Sir Zelman Cowen Universities Fundsupported by a National Health and Medical Research Council of Australia(NHMRC)Early Career Fellowship
文摘The incidence of intractable age-related neurodegenerative conditions such as Alzheimer's and Parkinson's diseases and age-related macular degeneration is projected to increase substantially over the coming decades with the ageing of the global population. While the burden of disease associ- ated with other chronic conditions has decreased in recent times due to improved diagnosis and treatment, current therapies for neurodegenerative diseases still fall short in that they are only effective in treating signs and symptoms - they do little to slow or prevent disease progress. Thus, there is an urgent need for treatments that address disease progression.
文摘A great challenge in neuroscience has been to understand how neurons communicate.The neuroanatomists of the 19th Century could see neurons stretching processes to contact other neurons,but could not see the detail of the contact.Many thought that neurons formed a syncytium,with continuity of membranes from one to the next.Over the ensuing two hundred years or so,we have come to understand that the circuity of the brain is not formed by a syncytium of neurons;rather,individual neurons communicate with each other with a range of biological signals.Neurons are highly active cells,with their activity being electrical and their communication being either chemical,electrical or gaseous.