Most existing knowledge graph relationship prediction methods are unable to capture the complex information of multi-relational knowledge graphs,thus overlooking key details contained in different entity pairs and mak...Most existing knowledge graph relationship prediction methods are unable to capture the complex information of multi-relational knowledge graphs,thus overlooking key details contained in different entity pairs and making it difficult to aggregate more complex relational features.Moreover,the insufficient capture of multi-hop relational information limits the processing capability of the global structure of the graph and reduces the accuracy of the knowledge graph completion task.This paper uses graph neural networks to construct new message functions for different relations,which can be defined as the rotation from the source entity to the target entity in the complex vector space for each relation,thereby improving the relation perception.To further enrich the relational diversity of different entities,we capture themulti-hop structural information in complex graph structure relations by incorporating two-hop relations for each entity and adding auxiliary edges to various relation combinations in the knowledge graph,thereby aggregating more complex relations and improving the reasoning ability of complex relational information.To verify the effectiveness of the proposed method,we conducted experiments on the WN18RR and FB15k-237 standard datasets.The results show that the method proposed in this study outperforms most existing methods.展开更多
文摘Most existing knowledge graph relationship prediction methods are unable to capture the complex information of multi-relational knowledge graphs,thus overlooking key details contained in different entity pairs and making it difficult to aggregate more complex relational features.Moreover,the insufficient capture of multi-hop relational information limits the processing capability of the global structure of the graph and reduces the accuracy of the knowledge graph completion task.This paper uses graph neural networks to construct new message functions for different relations,which can be defined as the rotation from the source entity to the target entity in the complex vector space for each relation,thereby improving the relation perception.To further enrich the relational diversity of different entities,we capture themulti-hop structural information in complex graph structure relations by incorporating two-hop relations for each entity and adding auxiliary edges to various relation combinations in the knowledge graph,thereby aggregating more complex relations and improving the reasoning ability of complex relational information.To verify the effectiveness of the proposed method,we conducted experiments on the WN18RR and FB15k-237 standard datasets.The results show that the method proposed in this study outperforms most existing methods.
基金This work was supported by the National Natural Science Foundation of China(No.52206222,No.22227901)State Key Laboratory of Laser Interaction with Matter Foundation(SKLLIM2009).