This study investigated differences in the community structure and environmental responses of the bacterial community in sediments of the Bohai Sea.Illumina high-throughput sequencing technology and real-time PCR were...This study investigated differences in the community structure and environmental responses of the bacterial community in sediments of the Bohai Sea.Illumina high-throughput sequencing technology and real-time PCR were used to assay the bacterial 16S rRNA genes in the surface sediments of 13 sampling stations in the Bohai Sea.The results showed that sediments at the majority of the 13 sampling stations were contaminated by heavy metal mercury.The main phyla of bacteria recorded included Proteobacteria(52.92%),Bacteroidetes(11.76%),Planctomycetes(7.39%),Acidobacteria(6.53%)and Chloroflexi(4.97%).The genus with the highest relative abundance was Desulfobulbus(4.99%),which was the dominant genus at most sampling stations,followed by Lutimonas and Halioglobus.The main factors influencing bacterial community structure were total organic carbon,followed by depth and total phosphorus.The content of lead,cadmium,chromium,copper and zinc had a consistent effect on community structure.Arsenic showed a negative correlation with bacterial community structure in most samples,while the impact of mercury on community structure was not significant.The bacterial community in sediment samples from the Bohai Sea was rich in diversity and displayed an increase in diversity from high to low latitudes.The data indicated that the Bohai Sea had abundant microbial resources and was rich in bacteria with the potential to metabolize many types of pollutants.展开更多
Marine spatial planning(MSP)is designed to divide the sea area into different types of functional zones,to implement corresponding development activities.However,the long-term impacts of anthropogenic activities assoc...Marine spatial planning(MSP)is designed to divide the sea area into different types of functional zones,to implement corresponding development activities.However,the long-term impacts of anthropogenic activities associated with MSP practice on the marine microbial biosphere are still unclear.Yalu River Estuary,a coastal region in northeast of China,has been divided into fishery&agricultural(F&A)zone,shipping&port(S&P)zone and marine protected area(MPA)zone by a local MSP guideline that has been run for decades.To examine the effects of long-term executed MSP,benthic bacterial communities from different MSP zones were obtained and compared in this study.The results revealed significant differences in the bacterial community structure and predict functions among different zones.Bacterial genera enriched in different zones were identified,including SBR1031 in MPA,Woeseia and Sva0996 in S&P,and Halioglobus in F&A.In addition,correlations between some bacterial genera and sediment pollutants were uncovered.Furthermore,bacteria related to sulphide production were more abundant in the F&A zone,which was according to the accumulation of sulphides in this area.Moreover,bacteria associated with chemoheterotrophy and fermentation were more predominant in the S&P zone,consistent with high levels of organic matter and petroleum caused by shipping.Our findings indicated benthic bacterial communities could bring to light the anthropogenic activity footprints by different activities induced by long-term MSP practice.展开更多
基金The National Key Basic Research Special Foundation of China under contract No.2017YFC1404500the National Natural Science Foundation of China under contract No.41676115
文摘This study investigated differences in the community structure and environmental responses of the bacterial community in sediments of the Bohai Sea.Illumina high-throughput sequencing technology and real-time PCR were used to assay the bacterial 16S rRNA genes in the surface sediments of 13 sampling stations in the Bohai Sea.The results showed that sediments at the majority of the 13 sampling stations were contaminated by heavy metal mercury.The main phyla of bacteria recorded included Proteobacteria(52.92%),Bacteroidetes(11.76%),Planctomycetes(7.39%),Acidobacteria(6.53%)and Chloroflexi(4.97%).The genus with the highest relative abundance was Desulfobulbus(4.99%),which was the dominant genus at most sampling stations,followed by Lutimonas and Halioglobus.The main factors influencing bacterial community structure were total organic carbon,followed by depth and total phosphorus.The content of lead,cadmium,chromium,copper and zinc had a consistent effect on community structure.Arsenic showed a negative correlation with bacterial community structure in most samples,while the impact of mercury on community structure was not significant.The bacterial community in sediment samples from the Bohai Sea was rich in diversity and displayed an increase in diversity from high to low latitudes.The data indicated that the Bohai Sea had abundant microbial resources and was rich in bacteria with the potential to metabolize many types of pollutants.
基金The National Key Research and Development Program of China under contract No.2020 YFA0607600。
文摘Marine spatial planning(MSP)is designed to divide the sea area into different types of functional zones,to implement corresponding development activities.However,the long-term impacts of anthropogenic activities associated with MSP practice on the marine microbial biosphere are still unclear.Yalu River Estuary,a coastal region in northeast of China,has been divided into fishery&agricultural(F&A)zone,shipping&port(S&P)zone and marine protected area(MPA)zone by a local MSP guideline that has been run for decades.To examine the effects of long-term executed MSP,benthic bacterial communities from different MSP zones were obtained and compared in this study.The results revealed significant differences in the bacterial community structure and predict functions among different zones.Bacterial genera enriched in different zones were identified,including SBR1031 in MPA,Woeseia and Sva0996 in S&P,and Halioglobus in F&A.In addition,correlations between some bacterial genera and sediment pollutants were uncovered.Furthermore,bacteria related to sulphide production were more abundant in the F&A zone,which was according to the accumulation of sulphides in this area.Moreover,bacteria associated with chemoheterotrophy and fermentation were more predominant in the S&P zone,consistent with high levels of organic matter and petroleum caused by shipping.Our findings indicated benthic bacterial communities could bring to light the anthropogenic activity footprints by different activities induced by long-term MSP practice.