This paper describes a study into the development of more robust dust emission factors by means of dust and meteorological monitoring. Emission factors for nuisance dusts in the literature are scarce, with estimates o...This paper describes a study into the development of more robust dust emission factors by means of dust and meteorological monitoring. Emission factors for nuisance dusts in the literature are scarce, with estimates of dust output given for many processes in mass per unit area per year. Temporal variations and the extent and conditions in which maximum concentrations occur can therefore be impossible to predict with any accuracy. This investigation aims to improve predic-tions by “back calculating” emission levels based on dust monitoring around known dust sources. Nuisance dust and meteorological monitoring has been undertaken at a sand and gravel quarry in the UK for a consecutive period of two years. Sticky pad directional dust monitors were used to collect dust at eight locations at and around the site with meteorological data collected at an elec-tronic weather station within the site. Air quality modelling software (ADMS) was used to test emission factors from the European Environment Agency (EEA) and the US Environmental Protec-tion Agency (EPA) for emissions from mineral workings. Predictions were compared with the dust monitoring data to assess accuracy, with results showing limited poor correspondence (r<sup>2</sup> < 0.3). Trends showed that emission predictions were poorest in winter;this is likely because most emis-sion calculations are not weather dependent and seasonal fluctuations will occur. Dust emission rate calculations were altered with respect to the dust monitoring data for one monitoring location on the mineral site boundary and the model was run again. Results were then tested at two different locations up to 200 m from the site boundary, with very positive correlations (r<sup>2</sup > 0.89) and similar maximum concentrations (<5% difference). This study has therefore shown that ac-curate site-specific emission rates can be produced in combination with site boundary sticky pad dust monitoring in order to accurately derive estimations elsewhere.展开更多
Dependable computer based systems employing fault tolerance and robust software development techniques demand additional error detection and recovery related tasks. This results in tangling of core functionality with ...Dependable computer based systems employing fault tolerance and robust software development techniques demand additional error detection and recovery related tasks. This results in tangling of core functionality with these cross cutting non-functional concerns. In this regard current work identifies these dependability related non-functional and cross-cutting concerns and proposes design and implementation solutions in an aspect oriented framework that modularizes and separates them from core functionality. The degree of separation has been quantified using software metrics. A Lego NXT Robot based case study has been completed to evaluate the proposed design framework.展开更多
文摘This paper describes a study into the development of more robust dust emission factors by means of dust and meteorological monitoring. Emission factors for nuisance dusts in the literature are scarce, with estimates of dust output given for many processes in mass per unit area per year. Temporal variations and the extent and conditions in which maximum concentrations occur can therefore be impossible to predict with any accuracy. This investigation aims to improve predic-tions by “back calculating” emission levels based on dust monitoring around known dust sources. Nuisance dust and meteorological monitoring has been undertaken at a sand and gravel quarry in the UK for a consecutive period of two years. Sticky pad directional dust monitors were used to collect dust at eight locations at and around the site with meteorological data collected at an elec-tronic weather station within the site. Air quality modelling software (ADMS) was used to test emission factors from the European Environment Agency (EEA) and the US Environmental Protec-tion Agency (EPA) for emissions from mineral workings. Predictions were compared with the dust monitoring data to assess accuracy, with results showing limited poor correspondence (r<sup>2</sup> < 0.3). Trends showed that emission predictions were poorest in winter;this is likely because most emis-sion calculations are not weather dependent and seasonal fluctuations will occur. Dust emission rate calculations were altered with respect to the dust monitoring data for one monitoring location on the mineral site boundary and the model was run again. Results were then tested at two different locations up to 200 m from the site boundary, with very positive correlations (r<sup>2</sup > 0.89) and similar maximum concentrations (<5% difference). This study has therefore shown that ac-curate site-specific emission rates can be produced in combination with site boundary sticky pad dust monitoring in order to accurately derive estimations elsewhere.
文摘Dependable computer based systems employing fault tolerance and robust software development techniques demand additional error detection and recovery related tasks. This results in tangling of core functionality with these cross cutting non-functional concerns. In this regard current work identifies these dependability related non-functional and cross-cutting concerns and proposes design and implementation solutions in an aspect oriented framework that modularizes and separates them from core functionality. The degree of separation has been quantified using software metrics. A Lego NXT Robot based case study has been completed to evaluate the proposed design framework.