Locomotion performance degradation after carrying payloads is a significant challenge for insect-scale microrobots.Previously,a legged microrobot named BHMbot with a high load-carrying capacity based on front-leg actu...Locomotion performance degradation after carrying payloads is a significant challenge for insect-scale microrobots.Previously,a legged microrobot named BHMbot with a high load-carrying capacity based on front-leg actuation configuration and efficient running gait was proposed.However,insects,mammals and reptiles in nature typically use their powerful rear legs to achieve rapid running gaits for predation or risk evasion.In this work,the load-carrying capacity of the BHMbots with front-leg actuation and rear-leg actuation configurations is comparatively studied.Simulations based on a dynamic model with four degrees of freedom,along with experiments,have been conducted to analyze the locomotion characteristics of the two configurations under different payload masses.Both simulation and experimental results indicate that the load-carrying capacity of the microrobots is closely related to their actuation configurations,which leads to different dynamic responses of the microrobots after carrying varying payload masses.For microrobots with body lengths of 15 mm,the rear-leg actuation configuration exhibits a 31.2%enhancement in running speed compared to the front-leg actuation configuration when unloaded.Conversely,when carrying payloads exceeding 5.7 times the body mass(350 mg),the rear-leg actuation configuration demonstrates an 80.1%reduction in running speed relative to the front-leg actuation configuration under the same payload conditions.展开更多
The ionic-wind-powered Micro Air Vehicles(MAVs)can achieve a higher thrust-toweight ratio than other MAVs.However,this kind of MAV has not yet achieved controlled flight because of the unstable thrust produced by the ...The ionic-wind-powered Micro Air Vehicles(MAVs)can achieve a higher thrust-toweight ratio than other MAVs.However,this kind of MAV has not yet achieved controlled flight because of the unstable thrust produced by the ionic wind and the dynamic instability related to the small size.In this paper,a passive attitude stabilization method of the ionic-wind-powered MAV using air dampers is introduced.The key factors that influence the performance of the air dampers,including the layout,position,and area of the air dampers,are theoretically studied.The appropriate optimal position of the air dampers is also obtained by Monte Carlo stochastic simulations.Then the proposed passive attitude stabilization method is applied to the ionic-wind-powered MAVs of different wingspan(2 cm and 6.3 cm).Finally,the experimental results show that using the proposed method,attitude stabilization is achieved for the first time for the ionic-wind-powered MAV.Moreover,the altitude control of an ionic-wind-powered MAV with a wingspan of 6.3 cm is also demonstrated.展开更多
This paper presents the moving mechanism of a high-speed insect-scale microrobot via electromagnetically induced vibration of two simply supported beams.The microrobot,which has a body length of 12.3 mm and a total ma...This paper presents the moving mechanism of a high-speed insect-scale microrobot via electromagnetically induced vibration of two simply supported beams.The microrobot,which has a body length of 12.3 mm and a total mass of 137 mg,can achieve reciprocating lift motion of forelegs without any intermediate linkage mechanisms due to the design of an obliquely upward body tilt angle.The gait study shows that the body tilt angle prevents the forelegs from swinging backward when the feet contact the ground,which results in a forward friction force applied on the feet.During forward movement,the microrobot utilizes the elastic deformation of the simply supported beams as driving force to slide forward and its forelegs and rear legs work as pivots alternatively in a way similar to the movement of soft worms.The gait analysis also indicates that the moving direction of the microrobot is determined by whether its body tilt angle is obliquely upward or downward,and its moving speed is also related to the body tilt angle and as well as the body height.Under an applied AC voltage of 4 V,the microrobot can achieve a moving speed at 23.2 cm s1(18.9 body lengths per second),which is comparable to the fastest speed(20 cm s-1 or 20 body lengths per second)among the published insect-scale microrobots.The high-speed locomotion performance of the microrobot validates the feasibility of the presented actuation scheme and moving mechanism.展开更多
Micro aerial platforms face significant challenges in achieving long controlled endurance as most of the energy is consumed to overcome the weight of the body.In this study,we present a controllable micro blimp that a...Micro aerial platforms face significant challenges in achieving long controlled endurance as most of the energy is consumed to overcome the weight of the body.In this study,we present a controllable micro blimp that addresses this issue through the use of a helium-filled balloon.The micro blimp has a long axis of 23 cm and is propelled by four insect-sized flapping-wing thrusters,each weighing 80 mg and with a wingspan of 3.5 cm.These distributed thrusters enable controlled motions and provide the micro blimp with an advantage in flight endurance compared to multirotors or flapping-wing micro aerial vehicles at the same size scale.To enhance the performance of the controlled flight,we propose a wireless control module that enables manipulation from a distance of up to 100 m.Additionally,a smartphone application is developed to send instructions to the circuit board,allowing the blimp to turn left and right,ascend and descend,and achieve a combination of these movements separately.Our findings demonstrate that this micro blimp is one of the smallest controlled self-powered micro blimps to date.展开更多
基金supported in part by Beijing Natural Science Foundation under Grant 3232010in part by the National Natural Science Foundation of China under Grant 12002017+2 种基金in part by AECC Industry-university Collocation Fund under Grant HFZL2023CXY026in part by Beihang Outstanding Young Scholars Project under Grant YWF-23-L-1201in part by 111 Project under Grant B08009.
文摘Locomotion performance degradation after carrying payloads is a significant challenge for insect-scale microrobots.Previously,a legged microrobot named BHMbot with a high load-carrying capacity based on front-leg actuation configuration and efficient running gait was proposed.However,insects,mammals and reptiles in nature typically use their powerful rear legs to achieve rapid running gaits for predation or risk evasion.In this work,the load-carrying capacity of the BHMbots with front-leg actuation and rear-leg actuation configurations is comparatively studied.Simulations based on a dynamic model with four degrees of freedom,along with experiments,have been conducted to analyze the locomotion characteristics of the two configurations under different payload masses.Both simulation and experimental results indicate that the load-carrying capacity of the microrobots is closely related to their actuation configurations,which leads to different dynamic responses of the microrobots after carrying varying payload masses.For microrobots with body lengths of 15 mm,the rear-leg actuation configuration exhibits a 31.2%enhancement in running speed compared to the front-leg actuation configuration when unloaded.Conversely,when carrying payloads exceeding 5.7 times the body mass(350 mg),the rear-leg actuation configuration demonstrates an 80.1%reduction in running speed relative to the front-leg actuation configuration under the same payload conditions.
基金supported by the National Natural Science Foundation of China (No.12002017)the 111 Project, China (No. B08009)
文摘The ionic-wind-powered Micro Air Vehicles(MAVs)can achieve a higher thrust-toweight ratio than other MAVs.However,this kind of MAV has not yet achieved controlled flight because of the unstable thrust produced by the ionic wind and the dynamic instability related to the small size.In this paper,a passive attitude stabilization method of the ionic-wind-powered MAV using air dampers is introduced.The key factors that influence the performance of the air dampers,including the layout,position,and area of the air dampers,are theoretically studied.The appropriate optimal position of the air dampers is also obtained by Monte Carlo stochastic simulations.Then the proposed passive attitude stabilization method is applied to the ionic-wind-powered MAVs of different wingspan(2 cm and 6.3 cm).Finally,the experimental results show that using the proposed method,attitude stabilization is achieved for the first time for the ionic-wind-powered MAV.Moreover,the altitude control of an ionic-wind-powered MAV with a wingspan of 6.3 cm is also demonstrated.
基金This work is supported by the National Natural Science Foundation of China(Grant No.12002017)China Postdoctoral Science Foundation(Grant No.2019M650441)the 111 Project(Grant No.B08009).
文摘This paper presents the moving mechanism of a high-speed insect-scale microrobot via electromagnetically induced vibration of two simply supported beams.The microrobot,which has a body length of 12.3 mm and a total mass of 137 mg,can achieve reciprocating lift motion of forelegs without any intermediate linkage mechanisms due to the design of an obliquely upward body tilt angle.The gait study shows that the body tilt angle prevents the forelegs from swinging backward when the feet contact the ground,which results in a forward friction force applied on the feet.During forward movement,the microrobot utilizes the elastic deformation of the simply supported beams as driving force to slide forward and its forelegs and rear legs work as pivots alternatively in a way similar to the movement of soft worms.The gait analysis also indicates that the moving direction of the microrobot is determined by whether its body tilt angle is obliquely upward or downward,and its moving speed is also related to the body tilt angle and as well as the body height.Under an applied AC voltage of 4 V,the microrobot can achieve a moving speed at 23.2 cm s1(18.9 body lengths per second),which is comparable to the fastest speed(20 cm s-1 or 20 body lengths per second)among the published insect-scale microrobots.The high-speed locomotion performance of the microrobot validates the feasibility of the presented actuation scheme and moving mechanism.
基金co-supported by the Beijing Natural Science Foundation,China(No.3232010)the National Natural Science Foundation of China(No.12002017)the Ministry of Education of the People’s Republic of China 111 Project(No.B08009).
文摘Micro aerial platforms face significant challenges in achieving long controlled endurance as most of the energy is consumed to overcome the weight of the body.In this study,we present a controllable micro blimp that addresses this issue through the use of a helium-filled balloon.The micro blimp has a long axis of 23 cm and is propelled by four insect-sized flapping-wing thrusters,each weighing 80 mg and with a wingspan of 3.5 cm.These distributed thrusters enable controlled motions and provide the micro blimp with an advantage in flight endurance compared to multirotors or flapping-wing micro aerial vehicles at the same size scale.To enhance the performance of the controlled flight,we propose a wireless control module that enables manipulation from a distance of up to 100 m.Additionally,a smartphone application is developed to send instructions to the circuit board,allowing the blimp to turn left and right,ascend and descend,and achieve a combination of these movements separately.Our findings demonstrate that this micro blimp is one of the smallest controlled self-powered micro blimps to date.