Congenital scoliosis(CS)is a prevalent spinal deformity with a multifaceted etiology that remains incompletely understood.Recent advances in genetic and epigenetic research have provided novel insights into CS pathoge...Congenital scoliosis(CS)is a prevalent spinal deformity with a multifaceted etiology that remains incompletely understood.Recent advances in genetic and epigenetic research have provided novel insights into CS pathogenesis.Herein,we review the current progress in genetics and epigenetics to examine genetic variants,susceptibility factors,and the epigenetic regulatory mechanisms implicated in CS.Through an analysis of diverse genetic markers,chromosomal abnormalities,and epigenetic modifications,the correlation between genetic predisposition and environmental influences in CS pathogenesis is elucidated.By integrating these genetic and epigenetic findings,this study aims to clarify the underlying etiology of CS to provide guidance on future clinical interventions and promote the development of personalized therapeutic strategies.展开更多
The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energ...The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energy was determined by the neutron total cross-section spectrometer using the time-of-flight technique.A fast multi-cell fission chamber was used as the neutron detector,and a 10-mm-thick high-purity natural lead sample was employed for the neutron transmission measurements.The on-beam background was determined using Co,In,Ag,and Cd filters.The excitation function of ^(nat)Pb(n,tot)reaction below 20 MeV was calculated using the TALYS-1.96 nuclear-reaction modeling program.The present results were compared with previous results,the evaluated data available in the five major evaluated nuclear data libraries(i.e.,ENDF/B-VIII.0,JEFF-3.3,JENDL-5,CENDL-3.2,and BROND-3.1),and the theoretical calculation curve.Good agreement was found between the new results and those of previous experiments and with the theoretical curves in the corresponding region.This measurement obtained the neutron total cross section of natural lead with good accuracy over a wide energy range and added experimental data in the resonance energy range.This provides more reliable experimental data for nuclear engineering design and nuclear data evaluation of lead.展开更多
基金Supported by the National Natural Science Foundation of China,No.82460940Major Project of Gansu Province Joint Fund,No.23JRRA1519+2 种基金Key Science and Technology Project of Gansu Province,No.21ZD4FA009Natural Science Foundation of Gansu Province,No.24JRRA1040Gansu Province Famous Traditional Chinese Medicine Inheritance Studio Project。
文摘Congenital scoliosis(CS)is a prevalent spinal deformity with a multifaceted etiology that remains incompletely understood.Recent advances in genetic and epigenetic research have provided novel insights into CS pathogenesis.Herein,we review the current progress in genetics and epigenetics to examine genetic variants,susceptibility factors,and the epigenetic regulatory mechanisms implicated in CS.Through an analysis of diverse genetic markers,chromosomal abnormalities,and epigenetic modifications,the correlation between genetic predisposition and environmental influences in CS pathogenesis is elucidated.By integrating these genetic and epigenetic findings,this study aims to clarify the underlying etiology of CS to provide guidance on future clinical interventions and promote the development of personalized therapeutic strategies.
基金This work is supported by the National Natural Science Foundation of China(No.12375296)the Key Laboratory of Nuclear Data Foundation(No.JCKY2022201C153)+2 种基金the Natural Science Foundation of Hunan Province of China(Nos.2021JJ40444,2020RC3054)the Youth Innovation Promotion Association CAS(No.2023014)the National Key Research and Development Plan(No.2022YFA1603303).
文摘The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energy was determined by the neutron total cross-section spectrometer using the time-of-flight technique.A fast multi-cell fission chamber was used as the neutron detector,and a 10-mm-thick high-purity natural lead sample was employed for the neutron transmission measurements.The on-beam background was determined using Co,In,Ag,and Cd filters.The excitation function of ^(nat)Pb(n,tot)reaction below 20 MeV was calculated using the TALYS-1.96 nuclear-reaction modeling program.The present results were compared with previous results,the evaluated data available in the five major evaluated nuclear data libraries(i.e.,ENDF/B-VIII.0,JEFF-3.3,JENDL-5,CENDL-3.2,and BROND-3.1),and the theoretical calculation curve.Good agreement was found between the new results and those of previous experiments and with the theoretical curves in the corresponding region.This measurement obtained the neutron total cross section of natural lead with good accuracy over a wide energy range and added experimental data in the resonance energy range.This provides more reliable experimental data for nuclear engineering design and nuclear data evaluation of lead.