In this study,we investigated the correlation between the pre-strain and hydrogen embrittlement(HE)mechanisms in medium-Mn steel.Intercritically annealed Fe-7Mn-0.2C-3Al(wt.%)steel,which showed a two-phase microstruct...In this study,we investigated the correlation between the pre-strain and hydrogen embrittlement(HE)mechanisms in medium-Mn steel.Intercritically annealed Fe-7Mn-0.2C-3Al(wt.%)steel,which showed a two-phase microstructure comprising α ferrite and γR retained austenite,was used as a model alloy.As the pre-strain level increased from 0%to 45%,the volume fraction of γR gradually decreased owing to the strain-inducedα′martensite transformation accompanied by an increase in dislocation density.The HE resistance decreased with increasing the pre-strain level because the sample with a higher pre-strain level revealed a higher amount of dissolved hydrogen,combined with a more extensive brittle fracture region owing to the enhanced diffusion and permeation of hydrogen from the reduced γR fraction.Ad-ditionally,the H-assisted crack in the sample without pre-strain was initiated and propagated from the γR grains when the strain-induced α′phase was formed,because most of the dissolved hydrogen was concentrated in the γR grains,and these grains were predominantly deformed compared to the other phases.However,the pre-strained sample showed more pronounced multiple H-assisted cracking at the constituent phases,such as α and α′,because it exhibited relatively well-dispersed hydrogen atoms and reduced microstrain localization at the γR grains,due to the reduced γR fraction.展开更多
This work demonstrated the viability of friction stir welding for the welding of medium-Mn steels when used as cryogenic vessel materials for liquefied gas storage.We used an intercritically annealed Fe-7 Mn-0.2 C-3 A...This work demonstrated the viability of friction stir welding for the welding of medium-Mn steels when used as cryogenic vessel materials for liquefied gas storage.We used an intercritically annealed Fe-7 Mn-0.2 C-3 Al(wt.%)steel with a dual-phase(α'martensite andγ_(R) retained austenite)nanolaminate structure as a base material and systematically compared its microstructure and impact toughness after friction stir and tungsten inert gas welding.The friction stir welded specimen exhibited a large amount ofγ_(R) phase owing to a relatively low temperature during welding,whereas the tungsten inert gas welded specimen comprised only theα'phase.Furthermore,the friction stir welded steel exhibited a tuned morphology of nanoscale globular microstructure at the weld zone and did not exhibit any prior austenite grain boundary due to active recrystallization caused by deformation during welding.The preserved fraction ofγ_(R) and morphological tuning in the weldment improved the impact toughness of the friction stir welded steel at low temperatures.In the steel processed by tungsten inert gas welding,the notch crack propagated rapidly along the prior austenite grain boundaries-weakened by Mn and P segregations-resulting in poor impact toughness.However,the friction stir welded steel exhibited a higher resistance against notch crack propagation due to the slow crack propagation along the ultrafine ferrite/ferrite(α/α)interfaces,damage tolerance by the active transformation-induced plasticity from the large amount ofγR,and enhanced boundary cohesion by suppressed Mn and P segregations.展开更多
基金supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korean Government(MOTIE)(P0023676,HRD Program for Industrial Innovation)the National Research Foundation of Korea(NRF)(No.2021R1A6A3A13045008).
文摘In this study,we investigated the correlation between the pre-strain and hydrogen embrittlement(HE)mechanisms in medium-Mn steel.Intercritically annealed Fe-7Mn-0.2C-3Al(wt.%)steel,which showed a two-phase microstructure comprising α ferrite and γR retained austenite,was used as a model alloy.As the pre-strain level increased from 0%to 45%,the volume fraction of γR gradually decreased owing to the strain-inducedα′martensite transformation accompanied by an increase in dislocation density.The HE resistance decreased with increasing the pre-strain level because the sample with a higher pre-strain level revealed a higher amount of dissolved hydrogen,combined with a more extensive brittle fracture region owing to the enhanced diffusion and permeation of hydrogen from the reduced γR fraction.Ad-ditionally,the H-assisted crack in the sample without pre-strain was initiated and propagated from the γR grains when the strain-induced α′phase was formed,because most of the dissolved hydrogen was concentrated in the γR grains,and these grains were predominantly deformed compared to the other phases.However,the pre-strained sample showed more pronounced multiple H-assisted cracking at the constituent phases,such as α and α′,because it exhibited relatively well-dispersed hydrogen atoms and reduced microstrain localization at the γR grains,due to the reduced γR fraction.
基金supported by the National Research Foundation of Korea(NRF)(No.2020R1F1A1070808)supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0008425,The Competency Development Program for Industry Specialist)。
文摘This work demonstrated the viability of friction stir welding for the welding of medium-Mn steels when used as cryogenic vessel materials for liquefied gas storage.We used an intercritically annealed Fe-7 Mn-0.2 C-3 Al(wt.%)steel with a dual-phase(α'martensite andγ_(R) retained austenite)nanolaminate structure as a base material and systematically compared its microstructure and impact toughness after friction stir and tungsten inert gas welding.The friction stir welded specimen exhibited a large amount ofγ_(R) phase owing to a relatively low temperature during welding,whereas the tungsten inert gas welded specimen comprised only theα'phase.Furthermore,the friction stir welded steel exhibited a tuned morphology of nanoscale globular microstructure at the weld zone and did not exhibit any prior austenite grain boundary due to active recrystallization caused by deformation during welding.The preserved fraction ofγ_(R) and morphological tuning in the weldment improved the impact toughness of the friction stir welded steel at low temperatures.In the steel processed by tungsten inert gas welding,the notch crack propagated rapidly along the prior austenite grain boundaries-weakened by Mn and P segregations-resulting in poor impact toughness.However,the friction stir welded steel exhibited a higher resistance against notch crack propagation due to the slow crack propagation along the ultrafine ferrite/ferrite(α/α)interfaces,damage tolerance by the active transformation-induced plasticity from the large amount ofγR,and enhanced boundary cohesion by suppressed Mn and P segregations.