Human brain organoids are 3-dimensional brain-like tissues derived from human pluripotent stem cells and hold promising potential for modeling neurological,psychiatric,and developmental disorders.While the molecular a...Human brain organoids are 3-dimensional brain-like tissues derived from human pluripotent stem cells and hold promising potential for modeling neurological,psychiatric,and developmental disorders.While the molecular and cellular aspects of human brain organoids have been intensively studied,their functional properties such as organoid neural networks(ONNs)are largely understudied.Here,we summarize recent research advances in understanding,characterization,and application of functional ONNs in human brain organoids.We first discuss the formation of ONNs and follow up with characterization strategies including microelectrode array(MEA)technology and calcium imaging.Moreover,we highlight recent studies utilizing ONNs to investigate neurological diseases such as Rett syndrome and Alzheimer’s disease.Finally,we provide our perspectives on the future challenges and opportunities for using ONNs in basic research and translational applications.展开更多
基金supported by the National Institutes of Health(awards DP2AI160242 and U01DA056242).
文摘Human brain organoids are 3-dimensional brain-like tissues derived from human pluripotent stem cells and hold promising potential for modeling neurological,psychiatric,and developmental disorders.While the molecular and cellular aspects of human brain organoids have been intensively studied,their functional properties such as organoid neural networks(ONNs)are largely understudied.Here,we summarize recent research advances in understanding,characterization,and application of functional ONNs in human brain organoids.We first discuss the formation of ONNs and follow up with characterization strategies including microelectrode array(MEA)technology and calcium imaging.Moreover,we highlight recent studies utilizing ONNs to investigate neurological diseases such as Rett syndrome and Alzheimer’s disease.Finally,we provide our perspectives on the future challenges and opportunities for using ONNs in basic research and translational applications.