Surface functionalization or modification to introduce more oxygen-containing functional groups to biochar is an effective strategy for tuning the physicochemical properties and promoting follow-up applications.In thi...Surface functionalization or modification to introduce more oxygen-containing functional groups to biochar is an effective strategy for tuning the physicochemical properties and promoting follow-up applications.In this study,non-thermal plasma was applied for biochar surface carving before being used in contaminant removal and energy storage applications.The results showed that even a low dose of plasma exposure could introduce a high number density of oxygen-functional groups and enhance the hydrophilicity and metal affinity of the pristine biochar.The plasma-treated biochar enabled a faster metal-adsorption rate and a 40%higher maximum adsorption capacity of heavy metal ion Pb^(2+).Moreover,to add more functionality to biochar surface,biochar with and without plasma pre-treatment was activated by KOH at a temperature of 800℃.Using the same amount of KOH,the plasma treatment resulted in an activated carbon product with the larger BET surface area and pore volume.The performance of the treated activated carbon as a supercapacitor electrode was also substantially improved by>30%.This study may provide guidelines for enhancing the surface functionality and application performances of biochar using non-thermal-based techniques.展开更多
In plant pathology,the correct naming of a species is essential for determining the causal agents of disease.Species names not only serve the general purpose of concise communication,but also are critical for effectiv...In plant pathology,the correct naming of a species is essential for determining the causal agents of disease.Species names not only serve the general purpose of concise communication,but also are critical for effective plant quarantine,prevent-ing the introduction of new pathogens into a territory.Many phytopathogenic genera have multiple species and,in several genera,disagreements between the multiple prevailing species concept definitions result in numerous cryptic species.Some of these species were previously called by various names;forma speciales(specialised forms),subspecies,or pathotypes.However,based on new molecular evidence they are being assigned into new species.The frequent name changes and lack of consistent criteria to delineate cryptic species,species,subspecies,forms,and races create increasing confusion,often making communication among biologists arduous.Furthermore,such ambiguous information can convey misleading evo-lutionary concepts and species boundaries.The aim of this paper is to review these concepts,clarify their use,and evaluate them by referring to existing examples.We specifically address the question,“Do plant pathogens require a different ranking system?”We conclude that it is necessary to identify phytopathogens to species level based on data from multiple approaches.Furthermore,this identification must go beyond species level to clearly classify hitherto known subspecies,forms and races.In addition,when naming phytopathogenic genera,plant pathologists should provide more information about geographic locations and host ranges as well as host specificities for individual species,cryptic species,forms or races.When describing a new phytopathogen,we suggest that authors provide at least three representative strains together with pathogenicity test results.If Koch’s postulates cannot be fulfilled,it is necessary to provide complementary data such as associated disease severity on the host plant.Moreover,more sequenced collections of species causing diseases should be published in order to stabilise the boundaries of cryptic species,species,subspecies,forms,and races.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52007023)the Natural Science Foundation of Liaoning Province,China(Grant Nos.2020-BS-073,2019-ZD-0160)+2 种基金the China Postdoctoral Science Foundation(Grant No.2019M661107)the Dalian Maritime University basic scientific research business expenses key scientific research cultivation project(Grant No.3132020371)the Fundamental Research Funds for the Central Universities(Grant No.3132021159).
文摘Surface functionalization or modification to introduce more oxygen-containing functional groups to biochar is an effective strategy for tuning the physicochemical properties and promoting follow-up applications.In this study,non-thermal plasma was applied for biochar surface carving before being used in contaminant removal and energy storage applications.The results showed that even a low dose of plasma exposure could introduce a high number density of oxygen-functional groups and enhance the hydrophilicity and metal affinity of the pristine biochar.The plasma-treated biochar enabled a faster metal-adsorption rate and a 40%higher maximum adsorption capacity of heavy metal ion Pb^(2+).Moreover,to add more functionality to biochar surface,biochar with and without plasma pre-treatment was activated by KOH at a temperature of 800℃.Using the same amount of KOH,the plasma treatment resulted in an activated carbon product with the larger BET surface area and pore volume.The performance of the treated activated carbon as a supercapacitor electrode was also substantially improved by>30%.This study may provide guidelines for enhancing the surface functionality and application performances of biochar using non-thermal-based techniques.
基金We would like to thank the Thailand Research Fund,Grant RDG6130001 entitled“Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion”.Kevin D Hyde thanks Chiang Mai University for the award of a Visiting Professor.Ishara S Manawasinghe thank Prof Marco Thines for guiding the development of this paper by providing valuable ideas and comments.Alan JL Phillips acknowledges the support from UIDB/04046/2020 and UIDP/04046/2020 Centre grants from FCT,Portugal(to BioISI).
文摘In plant pathology,the correct naming of a species is essential for determining the causal agents of disease.Species names not only serve the general purpose of concise communication,but also are critical for effective plant quarantine,prevent-ing the introduction of new pathogens into a territory.Many phytopathogenic genera have multiple species and,in several genera,disagreements between the multiple prevailing species concept definitions result in numerous cryptic species.Some of these species were previously called by various names;forma speciales(specialised forms),subspecies,or pathotypes.However,based on new molecular evidence they are being assigned into new species.The frequent name changes and lack of consistent criteria to delineate cryptic species,species,subspecies,forms,and races create increasing confusion,often making communication among biologists arduous.Furthermore,such ambiguous information can convey misleading evo-lutionary concepts and species boundaries.The aim of this paper is to review these concepts,clarify their use,and evaluate them by referring to existing examples.We specifically address the question,“Do plant pathogens require a different ranking system?”We conclude that it is necessary to identify phytopathogens to species level based on data from multiple approaches.Furthermore,this identification must go beyond species level to clearly classify hitherto known subspecies,forms and races.In addition,when naming phytopathogenic genera,plant pathologists should provide more information about geographic locations and host ranges as well as host specificities for individual species,cryptic species,forms or races.When describing a new phytopathogen,we suggest that authors provide at least three representative strains together with pathogenicity test results.If Koch’s postulates cannot be fulfilled,it is necessary to provide complementary data such as associated disease severity on the host plant.Moreover,more sequenced collections of species causing diseases should be published in order to stabilise the boundaries of cryptic species,species,subspecies,forms,and races.