The proliferation of electric vehicles(EVs)introduces transformative opportunities and challenges for the stability of distribution networks.Unregulated EV charging will further exacerbate the inherent three-phase imb...The proliferation of electric vehicles(EVs)introduces transformative opportunities and challenges for the stability of distribution networks.Unregulated EV charging will further exacerbate the inherent three-phase imbalance of the power grid,while regulated EV charging will alleviate such imbalance.To systematically address this challenge,this study proposes a two-stage bidding strategy with dispatch potential of electric vehicle aggregators(EVAs).By constructing a coordinated framework that integrates the day-ahead and real-time markets,the proposed two-stage bidding strategy reconfigures distributed EVA clusters into a controllable dynamic energy storage system,with a particular focus on dynamic compensation for deviations between scheduled and real-time operations.A bilevel Stackelberg game resolves three-phase imbalance by achieving Nash equilibrium for inter-phase balance,with Karush-Kuhn-Tucker(KKT)conditions and mixed-integer secondorder cone programming(MISOCP)ensuring feasible solutions.The proposed coordinated framework is validated with different bidding modes includes independent bidding,full price acceptance,and cooperative bidding modes.The proposed twostage bidding strategy provides an EVA-based coordinated scheduling solution that balances the economic efficiency and phase stability in electricity market.展开更多
基金supported by Science and Technology Project of State Grid Corporation of China(No.5400-202318246A-1-1-ZN)。
文摘The proliferation of electric vehicles(EVs)introduces transformative opportunities and challenges for the stability of distribution networks.Unregulated EV charging will further exacerbate the inherent three-phase imbalance of the power grid,while regulated EV charging will alleviate such imbalance.To systematically address this challenge,this study proposes a two-stage bidding strategy with dispatch potential of electric vehicle aggregators(EVAs).By constructing a coordinated framework that integrates the day-ahead and real-time markets,the proposed two-stage bidding strategy reconfigures distributed EVA clusters into a controllable dynamic energy storage system,with a particular focus on dynamic compensation for deviations between scheduled and real-time operations.A bilevel Stackelberg game resolves three-phase imbalance by achieving Nash equilibrium for inter-phase balance,with Karush-Kuhn-Tucker(KKT)conditions and mixed-integer secondorder cone programming(MISOCP)ensuring feasible solutions.The proposed coordinated framework is validated with different bidding modes includes independent bidding,full price acceptance,and cooperative bidding modes.The proposed twostage bidding strategy provides an EVA-based coordinated scheduling solution that balances the economic efficiency and phase stability in electricity market.