期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sentiment Analysis on the Social Networks Using Stream Algorithms
1
作者 Nathan Aston Timothy Munson +3 位作者 jacob liddle Garrett Hartshaw Dane Livingston Wei Hu 《Journal of Data Analysis and Information Processing》 2014年第2期60-66,共7页
The rising popularity of online social networks (OSNs), such as Twitter, Facebook, MySpace, and LinkedIn, in recent years has sparked great interest in sentiment analysis on their data. While many methods exist for id... The rising popularity of online social networks (OSNs), such as Twitter, Facebook, MySpace, and LinkedIn, in recent years has sparked great interest in sentiment analysis on their data. While many methods exist for identifying sentiment in OSNs such as communication pattern mining and classification based on emoticon and parts of speech, the majority of them utilize a suboptimal batch mode learning approach when analyzing a large amount of real time data. As an alternative we present a stream algorithm using Modified Balanced Winnow for sentiment analysis on OSNs. Tested on three real-world network datasets, the performance of our sentiment predictions is close to that of batch learning with the ability to detect important features dynamically for sentiment analysis in data streams. These top features reveal key words important to the analysis of sentiment. 展开更多
关键词 Modified BALANCED WINNOW SENTIMENT Analysis TWITTER Online Social Networks Feature Selection Data STREAMS
在线阅读 下载PDF
Twitter Sentiment in Data Streams with Perceptron
2
作者 Nathan Aston jacob liddle Wei Hu 《Journal of Computer and Communications》 2014年第3期11-16,共6页
With the huge increase in popularity of Twitter in recent years, the ability to draw information regarding public sentiment from Twitter data has become an area of immense interest. Numerous methods of determining the... With the huge increase in popularity of Twitter in recent years, the ability to draw information regarding public sentiment from Twitter data has become an area of immense interest. Numerous methods of determining the sentiment of tweets, both in general and in regard to a specific topic, have been developed, however most of these functions are in a batch learning environment where instances may be passed over multiple times. Since Twitter data in real world situations are far similar to a stream environment, we proposed several algorithms which classify the sentiment of tweets in a data stream. We were able to determine whether a tweet was subjective or objective with an error rate as low as 0.24 and an F-score as high as 0.85. For the determination of positive or negative sentiment in subjective tweets, an error rate as low as 0.23 and an F-score as high as 0.78 were achieved. 展开更多
关键词 SENTIMENT Analysis TWITTER Grams PERCEPTRON DATA STREAM
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部