期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Spinodal decomposition-me diate d multi-architectured α precipitates making a metastable β-Ti alloy ultra-strong and ductile 被引量:3
1
作者 J.K.Yang C.L.Zhang +5 位作者 H.Zhang J.Li J.Y.Zhang J.Kuang G.Liu j.sun 《Journal of Materials Science & Technology》 CSCD 2024年第24期106-121,共16页
The chemical boundaries inside the ultrafine spinodal decomposition structure in metastable β-Ti alloys can act as a new feature to architect heterogeneous microstructures.In this work,we combined two semi-empirical ... The chemical boundaries inside the ultrafine spinodal decomposition structure in metastable β-Ti alloys can act as a new feature to architect heterogeneous microstructures.In this work,we combined two semi-empirical methods,i.e.,the d-electron theory and the e/a electron concentration,to achieve the spinodal decomposition structure in a metastable β Ti-4.5Al-4.5Mo-7V-1.5Cr-1.5Zr(wt.%)alloy.Utilizing the spinodal decomposition structure,the aged Ti-Al-Mo-V-Cr-Zr alloys showed multi-architectured α precipitates spanning from micron-scale(primary α_(p))to nano-scale(secondary α_(s))that were uniformly distributed in the β-domains.Being compared with the forged sample,the multi-scale heterogeneous microstructure enables the aged β-Ti alloy to have ultra-high strength(yield strength ~1366 MPa and ultimate tensile strength ~1424 MPa)and an appreciable ductility(~9.3%).Strengthening models were proposed for the present alloys to estimate the contribution of various microstructural features to the measured yield strength.While the solid solution strengthening,β-spinodal strengthening,and back stress strengthening made comparable contributions to the strength of the forged alloy,the back stress strengthening was the predominant strengthening effect in the aged alloy.This alloy design approach based on chemical boundary engineering to construct multi-architectured α precipitates provided an effective strategy for achieving an outstanding combination of ultra-high strength and ductility in metastable β-Ti alloys. 展开更多
关键词 Ti alloys Multi-architecturedαprecipitates Spinodal decomposition Mechanical properties Strengthening mechanisms
原文传递
A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability 被引量:9
2
作者 D.D.Zhang J.Kuang +3 位作者 H.Xue J.Y.Zhang G.Liu j.sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第1期201-212,共12页
In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the c... In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the coarsening kinetics of the coherent precipitates were systematically investigated.The results indicated that giant precipitation hardening and its synergy with other strengthening contributors confer on the aged material a yield strength as high as 1.0 GPa.Moreover,a unique particle-features-dependent plasticity mechanism was revealed in this alloy.That is,the alloy with a lower volume frac-tion,denser distribution,and finer particles mainly deformed by dislocation planar slip,otherwise,stack-faults-mediated plasticity was favored,rationalized by the cooperative/competitive effect of stack-fault energy,spatial confinement,and applied stress.Furthermore,the coarsening behavior of precipitate fol-lowed a modified Lifshitz-Slyozov-Wagner(LSW)model,and the nanoparticles displayed remarkably su-perior thermal stability compared to most traditional superalloys and reported multicomponent alloys.The superb coarsening resistance of precipitate originated from the coupled effect of intrinsic sluggish diffusion in multi-principal alloys and the dual-roles of Ta species as a precipitate stabilizer.This work provides a new pathway to develop strong-yet-ductile multicomponent alloys as promising candidates for high-temperature applications. 展开更多
关键词 Medium-entropy alloy Mechanical properties Precipitation hardening Deformation mechanisms Coarsening kinetics
原文传递
Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping 被引量:9
3
作者 D.D.Zhang H.Wang +3 位作者 J.Y.Zhang H.Xue G.Liu j.sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第28期184-195,共12页
Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-off dilemma.In this work,we combined a novel alloy design principle,i... Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-off dilemma.In this work,we combined a novel alloy design principle,i.e.harvesting pronounced solid solution hardening(SSH)based on the misfit volumes engineering,and simultaneously,architecting the ductile matrix based on the valence electron concentrations(VEC)criterion,to fulfill an excellent strength-ductility synergy for the newly emerging high/medium-entropy alloys(HEAs/MEAs).Based on this strategy,Al/Ta co-doping within NiCoCr MEA leads to an efficient synthetic approach,that is minor Al/Ta co-doping not only renders significantly enhanced strength with notable SSH effect and ultrahigh strain-hardening capability,but also sharply refines grains and induces abnormal twinning behaviors of(NiCoCr)_(92)Al_(6)Ta_(2) MEA.Compared with the partially twinned NiCoCr MEA,the yield strength(σy)and ultimate tensile strength(σUTS)of fully twinned Al/Ta-containing MEA were increased by~102%to~600 MPa and~35%to~1000 MPa,respectively,along with good ductility beyond 50%.Different from the NiCoCr MEA with deformation twins(DTs)/stacking faults(SFs)dominated plasticity,the extraordinary strain-hardening capability of the solute-hardened(NiCoCr)_(92)Al_(6)Ta_(2) MEA,deactivated deformation twinning,originates from the high density of dislocation walls,microbands and abundance of SFs.The abnormal twinning behaviors,i.e.,prevalence of annealing twins(ATs)but absence of DTs in(NiCoCr)_(92)Al_(6)Ta_(2) MEA,are explained in terms of the relaxation of grain boundaries(for ATs)and the twinning mechanism transition(for DTs),respectively. 展开更多
关键词 Medium-entropy alloys Mechanical properties Solid solution hardening Twinning behavior Strength-ductility synergy
原文传递
DISLOCATION DISSOCIATIONS AND FAULTENERGIES IN Ni_3Al ALLOYS DOPED WITH PALLADIUM 被引量:16
4
作者 j.sun C.S.Lee J.K.L.Lai 《中国有色金属学会会刊:英文版》 CSCD 1999年第S1期87-94,共8页
Dislocation structures in polycrystalline Ni 3Al alloy doped with palladium deformed at room temperature have been investigated by transmission electron microscopy. The structure consists mainly of dislocations dissoc... Dislocation structures in polycrystalline Ni 3Al alloy doped with palladium deformed at room temperature have been investigated by transmission electron microscopy. The structure consists mainly of dislocations dissociated into a /2〈011〉 super partials bounding an anti phase boundary (APB). Dislocations dissociated into a /3〈112〉 super Shockley partials bounding a superlattice intrinsic stacking fault (SISF) are also common debris. The majority of the SISFs are truncated loops, i.e. the partials bounding the SISF are of similar Burgers vector. These faulted loops are generated from APB coupled dislocations, according to a mechanism for formation of SISFs proposed by Suzuki et al , and recently modified by Chiba et al . The APB energies for {111} and {010} slip planes are measured to be 144±20 mJ/m 2 and 102±11 mJ/m 2 respectively, and the SISF energy has been estimated to be 12 mJ/m 2 in this alloy. It is concluded that the dislocation structure in Ni 74.5 Pd 2Al 23.5 alloy deformed at room temperature is similar to that in binary Ni 3Al, and the difference in fault energies between these two alloys is small. Thus, it seems unlikely that the enhancement of ductility of Ni 74.5 Pd 2Al 23.5 results from only such a small decrease of the ordering energy of the alloy. SISF bounding dislocations also have no apparent influence on the ductilization of Ni 74.5 Pd 2Al 23.5 alloy. 展开更多
关键词 Ni_(3)Alalloys palladium doption dislocation dissociations fault energies
在线阅读 下载PDF
Dual effect of Cu on the Al3Sc nanoprecipitate coarsening 被引量:5
5
作者 Y.H.Gao L.F.Cao +3 位作者 J.Kuang J.Y.Zhang G.Liu j.sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第2期38-45,共8页
It is generally considered that the Al3Sc nanoprecipitates are highly thermal stable,mainly due to quite slow Sc diffusion in theα-Al matrix.In this paper,we demonstrate in an Al-Cu-Sc alloy that the Cu atoms have du... It is generally considered that the Al3Sc nanoprecipitates are highly thermal stable,mainly due to quite slow Sc diffusion in theα-Al matrix.In this paper,we demonstrate in an Al-Cu-Sc alloy that the Cu atoms have dual effect on the coarsening of Al3Sc nanoprecipitates.On the one hand,the Cu atoms with high diffusivity tend to accelerate the Al3Sc coarsening,which results from the Cu-promoted Sc diffusion.On the other hand,some Cu atoms will segregate at the Al3Sc/matrix interface,which further stabilizes the Al3Sc nanoprecipitates by reducing the interfacial energy.Competition between these two effects is tailored by temperature,which rationalizes the experimental findings that the coarsening kinetics of Al3Sc nanoprecipitate is greatly boosted at 300℃-overaging while significantly suppressed at 400℃-overaging. 展开更多
关键词 Al alloys PRECIPITATE COARSENING INTERFACIAL SEGREGATION MICROSTRUCTURAL evolution
原文传递
Enhancing the high-temperature creep properties of Mo alloys via nanosized La_(2)O_(3) particle addition 被引量:6
6
作者 P.M.Cheng C.Yang +5 位作者 P.Zhang J.Y.Zhang H.Wang J.Kuang G.Liu j.sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第35期53-63,共11页
Molybdenum(Mo) alloys with different La_(2)O_(3)particle additions(0.6,0.9,1.5 wt.%) were prepared by powder metallurgy to investigate the effect of La_(2)O_(3)particles on microstructural evolution and creep behavior... Molybdenum(Mo) alloys with different La_(2)O_(3)particle additions(0.6,0.9,1.5 wt.%) were prepared by powder metallurgy to investigate the effect of La_(2)O_(3)particles on microstructural evolution and creep behavior of the alloy.Pure Mo,annealed at 1500℃ for 1 h,presented a fully recrystallized microstructure characterized by equiaxed grains.The alloys doped with La_(2)O_(3)particles(Mo-La_(2)O_(3)alloys),on the other hand,exhibited fibrous grains elongated in the rolling direction of the plate.In contrast to the shape of the grains,the average grain size of the alloys was found to be insensitive to the addition of La_(2)O_(3)particles.Nanosized La_(2)O_(3)particles with diameters ranging from 65 to 75 nm were distributed within the grain interior.Tensile creep tests showed that dislocation creep was the predominant deformation mode at intermediate creep rate(10^(-7)s^(-1)-10^(-4)s^(-1)) in the present alloys.The creep stress exponent and activation energy were found to decrease with increasing temperature,particularly within the low creep rate regime(<10^(-7)s^(-1)).The Mo-La_(2)O_(3)alloys exhibited remarkably greater apparent stress exponent and activation energy than pure Mo.A creep constitutive model based on the interaction between particles and dislocations was utilized to rationalize the nanoparticle-improved creep behavior.It was demonstrated that low relaxed efficiency of dislocation line energy,which is responsible for an enhanced climb resistance of dislocations,is the major creep strengthening mechanism in the Mo-La_(2)O_(3)alloys.In addition,the area reduction and creep fracture mode of the Mo-La_(2)O_(3)alloys were found to be a function of the creep rate and temperature,which can be explained by the effect of the two parameters on the creep and fracture mechanisms. 展开更多
关键词 Mo alloys Nanosized particles Creep strength Deformation and fracture
原文传递
GELCASTING OF NANO-SIZE Y-TZP 被引量:7
7
作者 j.sun L. Gao J.K. Guo and D.S. Yan (State Key Lab.of High PerformanceCeramics and Superfine Microstructure, Shanghai Institute of Ceram ics, Chinese Academy of Sciences, Shanghai 200050, China ) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第6期489-492,共4页
The green specimens of nano-size Y-TZP are formed by gelcasting method. Using polymer electrolytes NaPAA and NH_4PAA, we have studied the rheological properties of slurry.The optimum pH range is between 8 to 10. The p... The green specimens of nano-size Y-TZP are formed by gelcasting method. Using polymer electrolytes NaPAA and NH_4PAA, we have studied the rheological properties of slurry.The optimum pH range is between 8 to 10. The proper amount of dispersant changes with the solid content.The rheological measurements of suspension containing NH_4PAA show lower viscosity.The theoretical green density has been calculated. 展开更多
关键词 GELCASTING NANO-SIZE Y-TZP
在线阅读 下载PDF
Designing hetero-structured ultra-strong and ductile Zr-2.5Nb alloys:Utilizing the grain size-dependent martensite transformation during quenching 被引量:4
8
作者 S.Y.Liu J.Y.Zhang +6 位作者 J.Kuang X.Y.Bao D.D.Zhang C.L.Zhang J.K.Yang G.Liu j.sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第30期198-211,共14页
To further improve the service performance of Zr-2.5Nb alloy worked as pressure tubes in pressurized heavy water reactors,more investigation about the microstructure and thermomechanical processing route of Zr-2.5Nb a... To further improve the service performance of Zr-2.5Nb alloy worked as pressure tubes in pressurized heavy water reactors,more investigation about the microstructure and thermomechanical processing route of Zr-2.5Nb alloy need to be conducted.In this work,a hetero-structured Zr-2.5Nb alloy was prepared by applying a novel technique.Microstructure analysis reveals that the alloy exhibits a grain sizedependent martensite substructure transition during post-rolling quenching.The hetero-structure consists of equiaxed primaryαgrains and the lamellae groups containing both parallelα’dislocation martensite andα’twin martensite.Compared with the previously reported Zr-Nb alloys,the present Zr-2.5Nb alloys manifest the highest yield strength(∼710 MPa),together with a high ultimate tensile strength(∼844 MPa)and good ductility(∼17.1%).The enhanced mechanical properties are found to arise from the properly controlled fraction/size of the two types of martensite,which not only significantly strengthens the alloy but also contributes to a stronger strain hardening.A model based on the grain-size-dependent critical resolved shear stress for dislocation slip and twinning has been proposed to explain theα’martensite substructures transition at a critical grain size dc=3.3μm.Below this size,the critical resolved shear stress(CRSS)for twinning is higher than that for the<c+a>slip.Thus,theα’dislocation martensite is more favorable to form.Otherwise,theα’twin martensite would exhibit a high activity.The present work indicates that making use of the grain size-dependent martensite transformation to tailor the heterostructure in Zr alloys is an effective strategy to overcome the strength–ductility trade-off in the material. 展开更多
关键词 Zr-Nb alloys Heterogeneous structure Martensitic transformation Grain size Strength
原文传递
An insight into Mg alloying effects on Cu thin films:microstructural evolution and mechanical behavior 被引量:4
9
作者 G.Y.Li L.F.Cao +5 位作者 J.Y.Zhang X.G.Li Y.Q.Wang K.Wu G.Liu j.sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第22期101-112,共12页
How to design ultra-strong,light-weight Cu alloys is a long-term pursuit in materials community,which is technically superior and cost-effective for their promising energy-saving applications.In this work,we prepared ... How to design ultra-strong,light-weight Cu alloys is a long-term pursuit in materials community,which is technically superior and cost-effective for their promising energy-saving applications.In this work,we prepared Cu-Mg alloyed thin films to study light element Mg alloying effects on the microstructure,hardness and strain rate sensitivity(SRS) of nanocrystalline Cu thin films.In the studied Mg concentrationrange spanning from 0 at.% to 16.8 at.%,both the grain size and the twin spacing decrease monotonously with increasing Mg composition while Cu-2.8 at.% Mg sample has the highest twin fraction of ~75%.A combined strengthening model was employed to quantify the Mg concentration-dependent hardness of nanotwinned(NT) Cu-Mg thin films,in which the grain/twin boundary facilitates strengthening while the solute Mg atoms induce softening.Both the constant rate of loading tests and the nanoindentation creep tests uncover that compared with pure Cu samples,the NT Cu-Mg thin films manifest much lower SRS,particularly in the creep tests,owing to the activation of dynamic strain aging effects. 展开更多
关键词 Cu-Mg thin films Microstructure evolution Creep tests Hardness Strain rate sensitivity
原文传递
Formation process and oxidation behavior of MCrAlY+AlSiY composite coatings on a Ni-based superalloy 被引量:3
10
作者 S.M.Li L.B.Fu +6 位作者 W.L.Zhang W.Li j.sun T.G.Wang S.M.Jiang J.Gong C.Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第25期65-77,共13页
An AlSiY coating and two MCrAlY+AlSiY composite coatings with different thickness of MCrAlY interlayer were prepared by arc ion plating(AIP)and vacuum annealing.The isothermal oxidation behavior of coatings at 1100℃ ... An AlSiY coating and two MCrAlY+AlSiY composite coatings with different thickness of MCrAlY interlayer were prepared by arc ion plating(AIP)and vacuum annealing.The isothermal oxidation behavior of coatings at 1100℃ for 300 h was also investigated to characterize the microstructure evolution of coatings during annealing.The composite coatings exhibited a better high-temperature oxidation resistance at 1100℃ .The reason is that the addition of MCrAlY layer can greatly contribute to prevent the diffusion of refractory elements to the outer layer.The inhibition of Al inward diffusion can be much stronger,as the Si content increases in the outer layer during annealing. 展开更多
关键词 Composite coating ANNEALING Arc ion plating SEM OXIDATION
原文传递
Eutectic-reaction brazing of Al_(0.3)CoCrFeNi high-entropy alloys using Ni/Nb/Ni interlayers 被引量:3
11
作者 Y.Lei j.sun +3 位作者 X.G.Song M.X.Yang T.L.Yang J.Yin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第26期245-255,共11页
In this study,a novel eutectic-reaction brazing of Al_(0.3)CoCrFeNi high-entropy alloys(HEAs)^(1)was investigated with a design of laminated Ni/Nb/Ni interlayers.The typical Al_(0.3)CoCrFeNi brazing seam consisted of ... In this study,a novel eutectic-reaction brazing of Al_(0.3)CoCrFeNi high-entropy alloys(HEAs)^(1)was investigated with a design of laminated Ni/Nb/Ni interlayers.The typical Al_(0.3)CoCrFeNi brazing seam consisted of proeutecticγ,the lamellar eutectic structure composed of face-centered cubic(FCC)phase(eutecticγ)and C14 Laves,as well as a few amounts of Nb based solid solution.A high density of nanoscale ordered L1_(2)(γ)phase was precipitated withinγphase matrix.With the brazing temperature raised from 1200 to 1320℃,the dissolution volume of Al_(0.3)CoCrFeNi alloy into Ni-Nb liquid was increased.The microstructure of the brazing seam changed from hypereutectic(blocky Laves+γphase)to eutectic(Laves+eutecticγ)to hypoeutectic structures(proeutecticγ+Laves/γeutectic structure).The shear strength of joints was increased gradually due to the formation of eutectic lamellae and the cellular growth of proeutecticγphase.The maximum shear strength of the joint brazed at 1320℃for 10 min was up to 592 MPa,reaching 95%of the base metal.The joint mainly ruptured in the soft proeutecticγphase in a ductile fracture mode. 展开更多
关键词 High-entropy alloys BRAZING Eutectic structure Shear strength
原文传递
Deformation kinking and highly localized nanocrystallization in metastableβ-Ti alloys using cold forging 被引量:2
12
作者 Keer Li W.Chen +5 位作者 G.X.Yu J.Y.Zhang S.W.Xin J.X.Liu X.X.Wang j.sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第25期53-64,共12页
Deformation kinking as an uncommon plastic deformation mechanism has been reported in several materials while the relevant microstructure evolution and grain refinement behavior at a large strain remain unclear so far... Deformation kinking as an uncommon plastic deformation mechanism has been reported in several materials while the relevant microstructure evolution and grain refinement behavior at a large strain remain unclear so far.In this study,the issue was systematically investigated by utilizing cold forging to impose severe plastic deformation(SPD)on Ti-11 V metastableβ-Ti alloys.It is found that the formation of kink bands experiences dislocation gliding,pre-kinking and the ripening of pre-kinks in sequences.The kink bands are subsequently thickened through the coalescence of multiple kink bands in a manner of high accommodation.Ordinary dislocation slip is developed as a dominant deformation mechanism when deformation kinking is exhausted.The resulting grain refinement involves transverse breakdown and longitudinal splitting of dislocation walls and cells,which fragment kink bands into smallβ-blocks.Further refinement of theβ-blocks is still governed by dislocation activities,and finally nanograins with a diameter of~15 nm are produced at a large strain of 1.2.Alternatively,it is revealed that nanocrystallization is highly localized inside kink bands while the outer microstructure maintains original coarse structures.Such localized refinement characterization is ascribed to the intrinsic soft nature of kink bands,shown as low hardness in nanoindentation testing.The intrinsic softening of kink bands is uncovered to originate from the inner degraded dislocation density evidenced by both experimental measurement and theoretical calculation.These findings enrich fundamental understanding of deformation kinking,and shed some light on exploring the deformation accommodation mechanisms for metal materials at large strains. 展开更多
关键词 Metastableβ-Ti alloys Deformation kinking Microstructural evolution Grain refinement Dislocations
原文传递
Microstructural evolution and mechanical properties of NiCrAlYSi+NiAl/cBN abrasive coating coated superalloy during cyclic oxidation 被引量:2
13
作者 Y.D.Liu j.sun +4 位作者 W.Li W.S.Gu Z.L.Pei J.Gong C.Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第12期44-54,共11页
Cyclic oxidation behavior of Ni Cr Al YSi+Ni Al/c BN abrasive coating at 900°C and the mechanical properties of the coating-substrate system were investigated.Results indicated that elemental interdiffusion occur... Cyclic oxidation behavior of Ni Cr Al YSi+Ni Al/c BN abrasive coating at 900°C and the mechanical properties of the coating-substrate system were investigated.Results indicated that elemental interdiffusion occurred between the coating and substrate,which caused the formation of interdiffusion zone(IDZ)and secondary reaction zone(SRZ)during aluminization,while their compositions and structures changed with oxidation.Al N interfacial layer formed at c BN/metallic matrix interface during aluminization,while it transformed into multilayer oxides during oxidation.Due to the microstructural evolution of these interfaces,the fracture behavior and bending toughness of the system changed greatly during three-point bending tests.Besides,the damage mechanisms were discussed. 展开更多
关键词 Abrasive coating Cyclic oxidation TEM Interface SUPERALLOY
原文传递
Enhanced mechanical performance of grain boundary precipitation-hardened high-entropy alloys via a phase transformation at grain boundaries 被引量:2
14
作者 Y.L.Qi L.Zhao +10 位作者 X.Sun H.X.Zong X.D.Ding F.Jiang H.L.Zhang Y.K.Wu L.He F.Liu S.B.Jin G.Sha j.sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第27期271-284,共14页
Grain-boundary(GB)precipitation has a significant adverse effect on plasticity of alloys,which easily leads to catastrophic intergranular failure in safety-critical applications under high external loading.Herein,we r... Grain-boundary(GB)precipitation has a significant adverse effect on plasticity of alloys,which easily leads to catastrophic intergranular failure in safety-critical applications under high external loading.Herein,we report a novel strategy that uses the local stress concentration induced by GB precipitates as a driving force to trigger phase transformation of preset non-equiatomic high-entropy solid-solution phase at GBs.This in situ deformation-induced phase transformation at GBs introduces a well-known effect:transformation-induced plasticity(TRIP),which enables an exceptional elongation to fracture(above 38%)at a high strength(above 1.5 GPa)in a GB precipitation-hardened high-entropy alloy(HEA).The present strategy in terms of"local stress concentration-induced phase transformations at GBs"may provide a fundamental approach by taking advantage of(rather than avoiding)the GB precipitation to gain a superior combination of high strength and high ductility in HEAs. 展开更多
关键词 Non-equiatomic Grain-boundary precipitation High-entropy alloys DUCTILITY Transformation-induced plasticity
原文传递
Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates:A comparison of Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu vs Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu 被引量:1
15
作者 Y.F.Zhao H.H.Chen +5 位作者 D.D.Zhang J.Y.Zhang Y.Q.Wang K.Wu G.Liu j.sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第21期199-213,共15页
In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,an... In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,and comparatively study He-ion irradiation effects on their microstructure and mechanical properties.It ap-pears that the as-deposited HEA/Cu NLs manifest two size h-dependent hardness regimes(i.e.,increased hardness at small h and hardness plateau at large h),while the He-implanted ones exhibit monotonically increased hardness.Contrary to the fashion that smaller h renders less irradiation hardening in bimetal NLs,the Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs manifest the trend that smaller h leads to greater irradiation hard-ening.By contrast,the Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs exhibit the maximum irradiation hardening at a critical h=50 nm.Below this critical size,smaller h results in lower radiation hardening(similar to bimetal NLs),while above this size,smaller h results in greater radiation hardening(similar to Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs).Moreover,these transformable HEA/Cu NLs display inverse h-dependent strain rate sensitivity(SRS m)before and after He-ion irradiation.Nevertheless,compared with as-deposited samples,the irradi-ated Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs display reduced SRS,while the irradiated Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs dis-play enhanced SRS.Such unusual size-dependent irradiation strengthening and inverse h effect on SRS in irradiated samples were rationalized by considering the blocking effects of He bubbles on dislocation nucleation and motion,i.e.,dislocations shearing or bypassing He bubbles. 展开更多
关键词 High entropy alloy/metal nanolaminates Interfaces Irradiation hardening Strain rate sensitivity Size effects
原文传递
Hot Corrosion Behavior of Hf-Doped NiAl Coating in the Mixed Salt of Na_(2)SO_(4)+K_(2)SO_(4)at 900℃
16
作者 W.L.Zhang W.Li +5 位作者 L.B.Fu X.Peng j.sun S.M.Jiang J.Gong C.Sun 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第9期1409-1420,共12页
The hot corrosion behavior of the NiAl coating and the 5Hf-NiAl coating induced by mixed salt at 900℃was investigated.Comparing with the NiAl coating,the 5Hf-NiAl coating exhibited superior hot corrosion resistance b... The hot corrosion behavior of the NiAl coating and the 5Hf-NiAl coating induced by mixed salt at 900℃was investigated.Comparing with the NiAl coating,the 5Hf-NiAl coating exhibited superior hot corrosion resistance because the addition of Hf promoted the formation of protective oxide scale and reduced the growth rate of oxide scale.Therefore,internal sulfides were not present in the 5Hf-NiAl coating after hot corrosion for 140 h.Cr exhibited different distribution in the two coatings since the addition of Hf changed the hot corrosion process of the coating.Hf and Ti in the 5Hf-NiAl coating trapped and captured sulfur,preventing the penetration of sulfur into the coating.The hot corrosion mechanism of the two coating and the effects of Hf on this process were discussed in this work. 展开更多
关键词 Hot corrosion HAFNIUM Oxide scale TITANIUM SULFIDE
原文传递
Evidence of a J/ψΛstructure and observation of excited■^(-)states in the■b^(-)→J/ψΛK^(-) decay 被引量:5
17
作者 R.Aaij C.Abellán Beteta +966 位作者 T.Ackernley B.Adeva M.Adinolfi H.Afsharnia C.A.Aidala S.Aiola Z.Ajaltouni S.Akar J.Albrecht F.Alessio M.Alexander A.Alfonso Albero Z.Aliouche G.Alkhazov P.Alvarez Cartelle S.Amato Y.Amhis L.An L.Anderlini A.Andreianov M.Andreotti F.Archilli A.Artamonov M.Artuso K.Arzymatov E.Aslanides M.Atzeni B.Audurier S.Bachmann M.Bachmayer J.J.Back S.Baker P.Baladron Rodriguez V.Balagura W.Baldini J.Baptista Leite R.J.Barlow S.Barsuk W.Barter M.Bartolini F.Baryshnikov J.M.Basels G.Bassi B.Batsukh A.Battig A.Bay M.Becker F.Bedeschi I.Bediaga A.Beiter V.Belavin S.Belin V.Bellee K.Belous I.Belov I.Belyaev G.Bencivenni E.Ben-Haim A.Berezhnoy R.Bernet D.Berninghoff H.C.Bernstein C.Bertella E.Bertholet A.Bertolin C.Betancourt F.Betti Ia.Bezshyiko S.Bhasin J.Bhom L.Bian M.S.Bieker S.Bifani P.Billoir M.Birch F.C.R.Bishop A.Bizzeti M.Bj┆rn M.P.Blago T.Blake F.Blanc S.Blusk D.Bobulska J.A.Boelhauve O.Boente Garcia T.Boettcher A.Boldyrev A.Bondar N.Bondar S.Borghi M.Borisyak M.Borsato J.T.Borsuk S.A.Bouchiba T.J.V.Bowcock A.Boyer C.Bozzi M.J.Bradley S.Braun A.Brea Rodriguez M.Brodski J.Brodzicka A.Brossa Gonzalo D.Brundu A.Buonaura C.Burr A.Bursche A.Butkevich J.S.Butter J.Buytaert W.Byczynski S.Cadeddu H.Cai R.Calabrese L.Calefice L.Calero Diaz S.Cali R.Calladine M.Calvi M.Calvo Gomez P.Camargo Magalhaes A.Camboni P.Campana A.F.Campoverde Quezada S.Capelli L.Capriotti A.Carbone G.Carboni R.Cardinale A.Cardini I.Carli P.Carniti L.Carus K.Carvalho Akiba A.Casais Vidal G.Casse M.Cattaneo G.Cavallero S.Celani J.Cerasoli A.J.Chadwick M.G.Chapman M.Charles Ph.Charpentier G.Chatzikonstantinidis C.A.Chavez Barajas M.Chefdeville C.Chen S.Chen A.Chernov S.-G.Chitic V.Chobanova S.Cholak M.Chrzaszcz A.Chubykin V.Chulikov P.Ciambrone M.F.Cicala X.Cid Vidal G.Ciezarek P.E.L.Clarke M.Clemencic H.V.Cliff J.Closier J.L.Cobbledick V.Coco J.A.B.Coelho J.Cogan E.Cogneras L.Cojocariu P.Collins T.Colombo L.Congedo A.Contu N.Cooke G.Coombs G.Corti C.M.Costa Sobral B.Couturier D.C.Craik J.Crkovská M.Cruz Torres R.Currie C.L.Da Silva E.Dall’Occo J.Dalseno C.D’Ambrosio A.Danilina P.d’Argent A.Davis O.De Aguiar Francisco K.De Bruyn S.De Capua M.De Cian J.M.De Miranda L.De Paula M.De Serio D.De Simone P.De Simone J.A.de Vries C.T.Dean W.Dean D.Decamp L.Del Buono B.Delaney H.-P.Dembinski A.Dendek V.Denysenko D.Derkach O.Deschamps F.Desse F.Dettori B.Dey P.Di Nezza S.Didenko L.Dieste Maronas H.Dijkstra V.Dobishuk A.M.Donohoe F.Dordei A.C.dos Reis L.Douglas A.Dovbnya A.G.Downes K.Dreimanis M.W.Dudek L.Dufour V.Duk P.Durante J.M.Durham D.Dutta M.Dziewiecki A.Dziurda A.Dzyuba S.Easo U.Egede V.Egorychev S.Eidelman S.Eisenhardt S.Ek-In L.Eklund S.Ely A.Ene E.Epple S.Escher J.Eschle S.Esen T.Evans A.Falabella J.Fan Y.Fan B.Fang N.Farley S.Farry D.Fazzini P.Fedin M.Féo P.Fernandez Declara A.Fernandez Prieto J.M.Fernandeztenllado Arribas F.Ferrari L.Ferreira Lopes F.Ferreira Rodrigues S.Ferreres Sole M.Ferrillo M.Ferro-Luzzi S.Filippov R.A.Fini M.Fiorini M.Firlej K.M.Fischer C.Fitzpatrick T.Fiutowski F.Fleuret M.Fontana F.Fontanelli R.Forty V.Franco Lima M.Franco Sevilla M.Frank E.Franzoso G.Frau C.Frei D.A.Friday J.Fu Q.Fuehring W.Funk E.Gabriel T.Gaintseva A.Gallas Torreira D.Galli S.Gambetta Y.Gan M.Gandelman P.Gandini Y.Gao M.Garau L.M.Garcia Martin P.Garcia Moreno J.García Pardiñas B.Garcia Plana F.A.Garcia Rosales L.Garrido C.Gaspar R.E.Geertsema D.Gerick L.L.Gerken E.Gersabeck M.Gersabeck T.Gershon D.Gerstel Ph.Ghez V.Gibson M.Giovannetti A.Gioventù P.Gironella Gironell L.Giubega C.Giugliano K.Gizdov E.L.Gkougkousis V.V.Gligorov C.Göbel E.Golo-bardes D.Golubkov A.Golutvin A.Gomes S.Gomez Fernandez F.Goncalves Abrantes M.Goncerz G.Gong P.Gorbounov I.V.Gorelov C.Gotti E.Govorkova J.P.Grabowski R.Graciani Diaz T.Grammatico L.A.Granado Cardoso E.Graugés E.Graverini G.Graziani A.Grecu L.M.Greeven P.Griffith L.Grillo S.Gromov B.R.Gruberg Cazon C.Gu M.Guarise P.A.Günther E.Gushchin A.Guth Y.Guz T.Gys T.Hadavizadeh G.Haefeli C.Haen J.Haimberger T.Halewood-leagas P.M.Hamilton Q.Han X.Han T.H.Hancock S.Hansmann-Menzemer N.Harnew T.Harrison C.Hasse M.Hatch J.He M.Hecker K.Heijhoff K.Heinicke A.M.Hennequin K.Hennessy L.Henry J.Heuel A.Hicheur D.Hill M.Hilton S.E.Hollitt J.Hu J.Hu W.Hu W.Huang X.Huang W.Hulsbergen R.J.Hunter M.Hushchyn D.Hutchcroft D.Hynds P.Ibis M.Idzik D.Ilin P.Ilten A.Inglessi A.Ishteev K.Ivshin R.Jacobsson S.Jakobsen E.Jans B.K.Jashal A.Jawahery V.Jevtic M.Jezabek F.Jiang M.John D.Johnson C.R.Jones T.P.Jones B.Jost N.Jurik S.Kandybei Y.Kang M.Karacson M.Karpov N.Kazeev F.Keizer M.Kenzie T.Ketel B.Khanji A.Kharisova S.Kholodenko K.E.Kim T.Kirn V.S.Kirsebom O.Kitouni S.Klaver K.Klimaszewski S.Koliiev A.Kondybayeva A.Konoplyannikov P.Kopciewicz R.Kopecna P.Koppenburg M.Korolev I.Kostiuk O.Kot S.Kotriakhova P.Kravchenko L.Kravchuk R.D.Krawczyk M.Kreps F.Kress S.Kretzschmar P.Krokovny W.Krupa W.Krzemien W.Kucewicz M.Kucharczyk V.Kudryavtsev H.S.Kuindersma G.J.Kunde T.Kvaratskheliya D.Lacarrere G.Lafferty A.Lai A.Lampis D.Lancierini J.J.Lane R.Lane G.Lanfranchi C.Langenbruch J.Langer O.Lantwin T.Latham F.Lazzari R.Le Gac S.H.Lee R.Lefèvre A.Leflat S.Legotin O.Leroy T.Lesiak B.Leverington H.Li L.Li P.Li Y.Li Y.Li Z.Li X.Liang T.Lin R.Lindner V.Lisovskyi R.Litvinov G.Liu H.Liu S.Liu X.Liu A.Loi J.Lomba Castro I.Longstaff J.H.Lopes G.Loustau G.H.Lovell Y.Lu D.Lucchesi S.Luchuk M.Lucio Martinez V.Lukashenko Y.Luo A.Lupato E.Luppi O.Lupton A.Lusiani X.Lyu L.Ma R.Ma S.Maccolini F.Machefert F.Maciuc V.Macko P.Mackowiak S.Maddrell-Mander O.Madejczyk L.R.Madhan Mohan O.Maev A.Maevskiy D.Maisuzenko M.W.Majewski J.J.Malczewski S.Malde B.Malecki A.Malinin T.Maltsev H.Malygina G.Manca G.Mancinelli R.Manera Escalero D.Manuzzi D.Marangotto J.Maratas J.F.Marchand U.Marconi S.Mariani C.Marin Benito M.Marinangeli P.Marino J.Marks P.J.Marshall G.Martellotti L.Martinazzoli M.Martinelli D.Martinez Santos F.Martinez Vidal A.Massafferri M.Materok R.Matev A.Mathad Z.Mathe V.Matiunin C.Matteuzzi K.R.Mattioli A.Mauri E.Maurice J.Mauricio M.Mazurek M.McCann L.Mcconnell T.H.Mcgrath A.McNab R.McNulty J.V.Mead B.Meadows C.Meaux G.Meier N.Meinert D.Melnychuk S.Meloni M.Merk A.Merli L.Meyer Garcia M.Mikhasenko D.A.Milanes E.Millard M.Milovanovic M.-N.Minard L.Minzoni S.E.Mitchell B.Mitreska D.S.Mitzel A.Mödden R.A.Mohammed R.D.Moise T.Mombächer I.A.Monroy S.Monteil M.Morandin G.Morello M.J.Morello J.Moron A.B.Morris A.G.Morris R.Mountain H.Mu F.Muheim M.Mukherjee M.Mulder D.Müller K.Müller C.H.Murphy D.Murray P.Muzzetto P.Naik T.Nakada R.Nandakumar T.Nanut I.Nasteva M.Needham I.Neri I.Neri S.Neubert N.Neufeld R.Newcombe T.D.Nguyen C.Nguyen-Mau E.M.Niel S.Nieswand N.Nikitin N.S.Nolte C.Nunez A.Oblakowska-Mucha V.Obraztsov D.P.O’Hanlon R.Oldeman M.E.Olivares C.J.G.Onderwater A.Ossowska J.M.Otalora Goicochea T.Ovsiannikova P.Owen A.Oyanguren B.Pagare P.R.Pais T.Pajero A.Palano M.Palutan Y.Pan G.Panshin A.Papanestis M.Pappagallo L.L.Pappalardo C.Pappenheimer W.Parker C.Parkes C.J.Parkinson B.Passalacqua G.Passaleva A.Pastore M.Patel C.Patrignani C.J.Pawley A.Pearce A.Pellegrino M.Pepe Altarelli S.Perazzini D.Pereima P.Perret K.Petridis A.Petrolini A.Petrov S.Petrucci M.Petruzzo T.T.H.Pham A.Philippov L.Pica M.Piccini B.Pietrzyk G.Pietrzyk M.Pili D.Pinci F.Pisani A.Piucci Resmi P.K V.Placinta J.Plews M.Plo Casasus F.Polci M.Poli Lener M.Poliakova A.Poluektov N.Polukhina I.Polyakov E.Polycarpo G.J.Pomery S.Ponce D.Popov S.Popov S.Poslavskii K.Prasanth L.Promberger C.Prouve V.Pugatch H.Pullen G.Punzi W.Qian J.Qin R.Quagliani B.Quintana N.V.Raab R.I.Rabadan Trejo B.Rachwal J.H.Rademacker M.Rama M.Ramos Pernas M.S.Rangel F.Ratnikov G.Raven M.Reboud F.Redi F.Reiss C.Remon Alepuz Z.Ren V.Renaudin R.Ribatti S.Ricciardi K.Rinnert P.Robbe A.Robert G.Robertson A.B.Rodrigues E.Rodrigues J.A.Rodriguez Lopez A.Rollings P.Roloff V.Romanovskiy M.Romero Lamas A.Romero Vidal J.D.Roth M.Rotondo M.S.Rudolph T.Ruf J.Ruiz Vidal A.Ryzhikov J.Ryzka J.J.Saborido Silva N.Sagidova N.Sahoo B.Saitta D.Sanchez Gonzalo C.Sanchez Gras R.Santacesaria C.Santamarina Rios M.Santimaria E.Santovetti D.Saranin G.Sarpis M.Sarpis A.Sarti C.Satriano A.Satta M.Saur D.Savrina H.Sazak L.G.Scantlebury Smead S.Schael M.Schellenberg M.Schiller H.Schindler M.Schmelling B.Schmidt O.Schneider A.Schopper M.Schubiger S.Schulte M.H.Schune R.Schwemmer B.Sciascia A.Sciubba S.Sellam A.Semennikov M.Senghi Soares A.Sergi N.Serra L.Sestini A.Seuthe P.Seyfert D.M.Shangase M.Shapkin I.Shchemerov L.Shchutska T.Shears L.Shekhtman Z.Shen V.Shevchenko E.B.Shields E.Shmanin J.D.Shupperd B.G.Siddi R.Silva Coutinho G.Simi S.Simone I.Skiba N.Skidmore T.Skwarnicki M.W.Slater J.C.Smallwood J.G.Smeaton A.Smetkina E.Smith M.Smith A.Snoch M.Soares L.Soares Lavra M.D.Sokoloff F.J.P.Soler A.Solovev I.Solovyev F.L.Souza De Almeida B.Souza De Paula B.Spaan E.Spadaro Norella P.Spradlin F.Stagni M.Stahl S.Stahl P.Stefko O.Steinkamp S.Stemmle O.Stenyakin H.Stevens S.Stone M.E.Stramaglia M.Straticiuc D.Strekalina S.Strokov F.Suljik j.sun L.Sun Y.Sun P.Svihra P.N.Swallow K.Swientek A.Szabelski T.Szumlak M.Szymanski S.Taneja F.Teubert E.Thomas K.A.Thomson M.J.Tilley V.Tisserand S.T’Jampens M.Tobin S.Tolk L.Tomassetti D.Torres Machado D.Y.Tou M.Traill M.T.Tran E.Trifonova C.Trippl G.Tuci A.Tully N.Tuning A.Ukleja D.J.Unverzagt E.Ursov A.Usachov A.Ustyuzhanin U.Uwer A.Vagner V.Vagnoni A.Valassi G.Valenti N.Valls Canudas M.van Beuzekom M.Van Dijk E.van Herwijnen C.B.Van Hulse M.van Veghel R.Vazquez Gomez P.Vazquez Regueiro C.Vázquez Sierra S.Vecchi J.J.Velthuis M.Veltri A.Venkateswaran M.Veronesi M.Vesterinen D.Vieira M.Vieites Diaz H.Viemann X.Vilasis-Cardona E.Vilella Figueras P.Vincent G.Vitali A.Vollhardt D.Vom Bruch A.Vorobyev V.Vorobyev N.Voropaev R.Waldi J.Walsh C.Wang J.Wang J.Wang J.Wang J.Wang M.Wang R.Wang Y.Wang Z.Wang H.M.Wark N.K.Watson S.G.Weber D.Websdale C.Weisser B.D.C.Westhenry D.J.White M.Whitehead D.Wiedner G.Wilkinson M.Wilkinson I.Williams M.Williams M.R.J.Williams F.F.Wilson W.Wislicki M.Witek L.Witola G.Wormser S.A.Wotton H.Wu K.Wyllie Z.Xiang D.Xiao Y.Xie A.Xu J.Xu L.Xu M.Xu Q.Xu Z.Xu Z.Xu D.Yang S.Yang Y.Yang Z.Yang Z.Yang Y.Yao L.E.Yeomans H.Yin J.Yu X.Yuan O.Yushchenko E.Zaffaroni K.A.Zarebski M.Zavertyaev M.Zdybal O.Zenaiev M.Zeng D.Zhang L.Zhang S.Zhang Y.Zhang Y.Zhang A.Zhelezov Y.Zheng X.Zhou Y.Zhou X.Zhu V.Zhukov J.B.Zonneveld S.Zucchelli D.Zuliani G.Zunica 《Science Bulletin》 SCIE EI CSCD 2021年第13期1278-1287,M0003,共11页
First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark w... First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark with strangeness with a significance of 3.1r including systematic uncertainties and lookelsewhere effect.Its mass and width are determined to be 4458:8±2:9t4:7-1:1 MeV and 17:3±6:5t8:0-5:7 MeV,respectively,where the quoted uncertainties are statistical and systematic.The structure is also consistent with being due to two resonances.In addition,the narrow excited■^(-)states,N■(1690)and■(1820),are seen for the first time in a■b^(-)decay,and their masses and widths are measured with improved precision.The analysis is performed using pp collision data corresponding to a total integrated luminosity of 9 fb^(-1),collected with the LHCb experiment at centre-of-mass energies of 7,8 and 13 TeV. 展开更多
关键词 QCD EXOTICS PENTAQUARK Spectroscopy Quarkonium Particle and resonance production
原文传递
Search for the doubly charmed baryon ■ 被引量:3
18
作者 R.Aaij C.Abellán Beteta +907 位作者 T.Ackernley B.Adeva M.Adinolfi H.Afsharnia C.A.Aidala S.Aiola Z.Ajaltouni S.Akar P.Albicocco J.Albrecht F.Alessio M.Alexander A.Alfonso Albero G.Alkhazov P.Alvarez Cartelle A.A.Alves Jr S.Amato Y.Amhis L.An L.Anderlini G.Andreassi M.Andreotti F.Archilli J.Arnau Romeu A.Artamonov M.Artuso K.Arzymatov E.Aslanides M.Atzeni B.Audurier S.Bachmann J.J.Back S.Baker V.Balagura W.Baldini A.Baranov R.J.Barlow S.Barsuk W.Barter M.Bartolini F.Baryshnikov G.Bassi V.Batozskaya B.Batsukh A.Battig V.Battista A.Bay M.Becker F.Bedeschi I.Bediaga A.Beiter L.J.Bel V.Belavin S.Belin N.Beliy V.Bellee K.Belous I.Belyaev G.Bencivenni E.Ben-Haim S.Benson S.Beranek A.Berezhnoy R.Bernet D.Berninghoff H.C.Bernstein E.Bertholet A.Bertolin C.Betancourt F.Betti M.O.Bettler Ia.Bezshyiko S.Bhasin J.Bhom M.S.Bieker S.Bifani P.Billoir A.Birnkraut A.Bizzeti M.Bjφrn M.P.Blago T.Blake F.Blanc S.Blusk D.Bobulska V.Bocci O.Boente Garcia T.Boettcher A.Boldyrev A.Bondar N.Bondar S.Borghi M.Borisyak M.Borsato J.T.Borsuk T.J.V.Bowcock C.Bozzi S.Braun A.Brea Rodriguez M.Brodski J.Brodzicka A.Brossa Gonzalo D.Brundu E.Buchanan A.Buonaura C.Burr A.Bursche J.S.Butter J.Buytaert W.Byczynski S.Cadeddu H.Cai R.Calabrese S.Cali R.Calladine M.Calvi M.Calvo Gomez A.Camboni P.Campana D.H.Campora Perez L.Capriotti A.Carbone G.Carboni R.Cardinale A.Cardini P.Carniti K.Carvalho Akiba A.Casais Vidal G.Casse M.Cattaneo G.Cavallero R.Cenci J.Cerasoli M.G.Chapman M.Charles Ph.Charpentier G.Chatzikonstantinidis M.Chefdeville V.Chekalina C.Chen S.Chen A.Chernov S.-G.Chitic V.Chobanova M.Chrzaszcz A.Chubykin P.Ciambrone M.F.Cicala X.Cid Vidal G.Ciezarek F.Cindolo P.E.L.Clarke M.Clemencic H.V.Cliff J.Closier J.L.Cobbledick V.Coco J.A.B.Coelho J.Cogan E.Cogneras L.Cojocariu P.Collins T.Colombo A.Comerma-Montells A.Contu N.Cooke G.Coombs S.Coquereau G.Corti C.M.Costa Sobral B.Couturier D.C.Craik J.Crkovska A.Crocombe M.Cruz Torres R.Currie C.L.Da Silva E.Dall'Occo J.Dalseno C.D'Ambrosio A.Danilina P.d'Argent A.Davis O.De Aguiar Francisco K.De Bruyn S.De Capua M.De Cian J.M.De Miranda L.De Paula M.De Serio P.De Simone J.A.de Vries C.T.Dean W.Dean D.Decamp L.Del Buono B.Delaney H.-P.Dembinski M.Demmer A.Dendek V.Denysenko D.Derkach O.Deschamps F.Desse F.Dettori B.Dey A.Di Canto P.Di Nezza S.Didenko H.Dijkstra F.Dordei M.Dorigo A.C.dos Reis L.Douglas A.Dovbnya K.Dreimanis M.W.Dudek L.Dufour G.Dujany P.Durante J.M.Durham D.Dutta R.Dzhelyadin M.Dziewiecki A.Dziurda A.Dzyuba S.Easo U.Egede V.Egorychev S.Eidelman S.Eisenhardt R.Ekelhof S.Ek-In L.Eklund S.Ely A.Ene S.Escher S.Esen T.Evans A.Falabella J.Fan N.Farley S.Farry D.Fazzini M.Feo P.Fernandez Declara A.Fernandez Prieto F.Ferrari L.Ferreira Lopes F.Ferreira Rodrigues S.Ferreres Sole M.Ferrillo M.Ferro-Luzzi S.Filippov R.A.Fini M.Fiorini M.Firlej K.M.Fischer C.Fitzpatrick T.Fiutowski F.Fleuret M.Fontana F.Fontanelli R.Forty V.Franco Lima M.Franco Sevilla M.Frank C.Frei D.A.Friday J.Fu M.Fuehring W.Funk E.Gabriel A.Gallas Torreira D.Galli S.Gallorini S.Gambetta Y.Gan M.Gandelman P.Gandini Y.Gao L.M.Garcia Martin J.Garc'ia Pardi nas B.Garcia Plana F.A.Garcia Rosales J.Garra Tico L.Garrido D.Gascon C.Gaspar D.Gerick E.Gersabeck M.Gersabeck T.Gershon D.Gerstel Ph.Ghez V.Gibson A.Gioventù O.G.Girard P.Gironella Gironell L.Giubega C.Giugliano K.Gizdov V.V.Gligorov C.Gobel D.Golubkov A.Golutvin A.Gomes P.Gorbounov I.V.Gorelov C.Gotti E.Govorkova J.P.Grabowski R.Graciani Diaz T.Grammatico L.A.Granado Cardoso E.Graugés E.Graverini G.Graziani A.Grecu R.Greim P.Griffith L.Grillo L.Gruber B.R.Gruberg Cazon C.Gu E.Gushchin A.Guth Yu.Guz T.Gys T.Hadavizadeh G.Haefeli C.Haen S.C.Haines P.M.Hamilton Q.Han X.Han T.H.Hancock S.Hansmann-Menzemer N.Harnew T.Harrison R.Hart C.Hasse M.Hatch J.He M.Hecker K.Heijhoff K.Heinicke A.Heister A.M.Hennequin K.Hennessy L.Henry J.Heuel A.Hicheur R.Hidalgo Charman D.Hill M.Hilton P.H.Hopchev J.Hu W.Hu W.Huang Z.C.Huard W.Hulsbergen T.Humair R.J.Hunter M.Hushchyn D.Hutchcroft D.Hynds P.Ibis M.Idzik P.Ilten A.Inglessi A.Inyakin K.Ivshin R.Jacobsson S.Jakobsen J.Jalocha E.Jans B.K.Jashal A.Jawahery V.Jevtic F.Jiang M.John D.Johnson C.R.Jones B.Jost N.Jurik S.Kandybei M.Karacson J.M.Kariuki N.Kazeev M.Kecke F.Keizer M.Kelsey M.Kenzie T.Ketel B.Khanji A.Kharisova K.E.Kim T.Kirn V.S.Kirsebom S.Klaver K.Klimaszewski S.Koliiev A.Kondybayeva A.Konoplyannikov P.Kopciewicz R.Kopecna P.Koppenburg I.Kostiuk O.Kot S.Kotriakhova L.Kravchuk R.D.Krawczyk M.Kreps F.Kress S.Kretzschmar P.Krokovny W.Krupa W.Krzemien W.Kucewicz M.Kucharczyk V.Kudryavtsev H.S.Kuindersma G.J.Kunde A.K.Kuonen T.Kvaratskheliya D.Lacarrere G.Lafferty A.Lai D.Lancierini J.J.Lane G.Lanfranchi C.Langenbruch T.Latham F.Lazzari C.Lazzeroni R.Le Gac R.Lefèvre A.Leflat F.Lemaitre O.Leroy T.Lesiak B.Leverington H.Li P.-R.Li X.Li Y.Li Z.Li X.Liang R.Lindner F.Lionetto V.Lisovskyi G.Liu X.Liu D.Loh A.Loi J.Lomba Castro I.Longstaff J.H.Lopes G.Loustau G.H.Lovell Y.Lu D.Lucchesi M.Lucio Martinez Y.Luo A.Lupato E.Luppi O.Lupton A.Lusiani X.Lyu S.Maccolini F.Machefert F.Maciuc V.Macko P.Mackowiak S.Maddrell-Mander L.R.Madhan Mohan O.Maev 37, A.Maevskiy K.Maguire D.Maisuzenko M.W.Majewski S.Malde B.Malecki A.Malinin T.Maltsev H.Malygina G.Manca G.Mancinelli R.Manera Escalero D.Manuzzi D.Marangotto J.Maratas J.F.Marchand U.Marconi S.Mariani C.Marin Benito M.Marinangeli P.Marino J.Marks P.J.Marshall G.Martellotti L.Martinazzoli M.Martinelli D.Martinez Santos F.Martinez Vidal A.Massafferri M.Materok R.Matev A.Mathad Z.Mathe V.Matiunin C.Matteuzzi K.R.Mattioli A.Mauri E.Maurice M.McCann L.Mcconnell A.McNab R.McNulty J.V.Mead B.Meadows C.Meaux N.Meinert D.Melnychuk S.Meloni M.Merk A.Merli D.A.Milanes E.Millard M.-N.Minard O.Mineev L.Minzoni S.E.Mitchell B.Mitreska D.S.Mitzel A.Modden A.Mogini R.D.Moise T.Mombacher I.A.Monroy S.Monteil M.Morandin G.Morello M.J.Morello J.Moron A.B.Morris A.G.Morris R.Mountain H.Mu F.Muheim M.Mukherjee M.Mulder D.Müller J.Müller K.Müller V.Müller C.H.Murphy D.Murray P.Muzzettov P.Naik T.Nakada R.Nandakumar A.Nandi T.Nanut I.Nasteva M.Needham N.Neri S.Neubert N.Neufeld R.Newcombe T.D.Nguyen C.Nguyen-Mau E.M.Niel S.Nieswand N.Nikitin N.S.Nolte A.Oblakowska-Mucha V.Obraztsov S.Ogilvy D.P.O'Hanlon R.Oldeman C.J.G.Onderwater J.D.Osborn A.Ossowska J.M.Otalora Goicochea T.Ovsiannikova P.Owen A.Oyanguren P.R.Pais T.Pajero A.Palano M.Palutan G.Panshin A.Papanestis M.Pappagallo L.L.Pappalardo W.Parker C.Parkes G.Passaleva A.Pastore M.Patel C.Patrignani A.Pearce A.Pellegrino G.Penso M.Pepe Altarelli S.Perazzini D.Pereima P.Perret L.Pescatore K.Petridis A.Petrolini A.Petrov S.Petrucci M.Petruzzo B.Pietrzyk G.Pietrzyk M.Pikies M.Pili D.Pinci J.Pinzino F.Pisani A.Piucci V.Placinta S.Playfer J.Plews M.Plo Casasus F.Polci M.Poli Lener M.Poliakova A.Poluektov N.Polukhina I.Polyakov E.Polycarpo G.J.Pomery S.Ponce A.Popov D.Popov S.Poslavskii K.Prasanth L.Promberger C.Prouve V.Pugatch A.Puig Navarro H.Pullen G.Punzi W.Qian J.Qin R.Quagliani B.Quintana N.V.Raab B.Rachwal J.H.Rademacker M.Rama M.Ramos Pernas M.S.Rangel F.Ratnikov G.Raven M.Ravonel Salzgeber M.Reboud F.Redi S.Reichert F.Reiss C.Remon Alepuz Z.Ren V.Renaudin S.Ricciardi S.Richards K.Rinnert P.Robbe A.Robert A.B.Rodrigues E.Rodrigues J.A.Rodriguez Lopez M.Roehrken S.Roiser A.Rollings V.Romanovskiy M.Romero Lamas A.Romero Vidal J.D.Roth M.Rotondo M.S.Rudolph T.Ruf J.Ruiz Vidal J.Ryzka J.J.Saborido Silva N.Sagidova B.Saitta C.Sanchez Gras C.Sanchez Mayordomo B.Sanmartin Sedes R.Santacesaria C.Santamarina Rios M.Santimaria E.Santovetti G.Sarpis A.Sarti C.Satriano A.Satta M.Saur D.Savrina L.G.Scantlebury Smead S.Schael M.Schellenberg M.Schiller H.Schindler M.Schmelling T.Schmelzer B.Schmidt O.Schneider A.Schopper H.F.Schreiner M.Schubiger S.Schulte M.H.Schune R.Schwemmer B.Sciascia A.Sciubba S.Sellam A.Semennikov A.Sergi N.Serra J.Serrano L.Sestini A.Seuthe P.Seyfert D.M.Shangase M.Shapkin T.Shears L.Shekhtman V.Shevchenko E.Shmanin J.D.Shupperd B.G.Siddi R.Silva Coutinho L.Silva de Oliveira G.Simi S.Simone I.Skiba N.Skidmore T.Skwarnicki M.W.Slater J.G.Smeaton A.Smetkina E.Smith I.T.Smith M.Smith A.Snoch M.Soares L.Soares Lavra M.D.Sokoloff F.J.P.Soler B.Souza De Paula B.Spaan E.Spadaro Norella P.Spradlin F.Stagni M.Stahl S.Stahl P.Stefko S.Stefkova O.Steinkamp S.Stemmle O.Stenyakin M.Stepanova H.Stevens A.Stocchi S.Stone S.Stracka M.E.Stramaglia M.Straticiuc U.Straumann S.Strokov j.sun L.Sun Y.Sun P.Svihra K.Swientek A.Szabelski T.Szumlak M.Szymanski S.Taneja Z.Tang T.Tekampe G.Tellarini F.Teubert E.Thomas K.A.Thomson M.J.Tilley V.Tisserand S.T'Jampens M.Tobin S.Tolk L.Tomassetti D.Tonelli D.Y.Tou E.Tournefier M.Traill M.T.Tran A.Trisovic A.Tsaregorodtsev G.Tuci A.Tully N.Tuning A.Ukleja A.Usachov A.Ustyuzhanin U.Uwer A.Vagner V.Vagnoni A.Valassi G.Valenti M.van Beuzekom H.Van Hecke E.van Herwijnen C.B.Van Hulse J.van Tilburg M.van Veghel R.Vazquez Gomez P.Vazquez Regueiro C.Vazquez Sierra S.Vecchi J.J.Velthuis M.Veltri A.Venkateswaran M.Vernet M.Veronesi M.Vesterinen J.V.Viana Barbosa D.Vieira M.Vieites Diaz H.Viemann X.Vilasis-Cardona A.Vitkovskiy V.Volkov A.Vollhardt D.Vom Bruch A.Vorobyev V.Vorobyev N.Voropaev R.Waldi J.Walsh J.Wang J.Wang M.Wang Y.Wang Z.Wang D.R.Ward H.M.Wark N.K.Watson D.Websdale A.Weiden C.Weisser B.D.C.Westhenry D.J.White M.Whitehead D.Wiedner G.Wilkinson M.Wilkinson I.Williams M.Williams M.R.J.Williams T.Williams F.F.Wilson M.Winn W.Wislicki M.Witek G.Wormser S.A.Wotton H.Wu K.Wyllie Z.Xiang D.Xiao Y.Xie H.Xing A.Xu L.Xu M.Xu Q.Xu Z.Xu Z.Xu Z.Yang Z.Yang Y.Yao L.E.Yeomans H.Yin J.Yu X.Yuan O.Yushchenko K.A.Zarebski M.Zavertyaev M.Zdybal M.Zeng D.Zhang L.Zhang S.Zhang W.C.Zhang Y.Zhang A.Zhelezov Y.Zheng X.Zhou Y.Zhou X.Zhu V.Zhukov J.B.Zonneveld S.Zucchelli 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2020年第2期8-22,共15页
A search for the doubly charmed baryon ■^+cc is performed through its decay to theΛ^+c K^-π^+ final state,using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7,8 and 13... A search for the doubly charmed baryon ■^+cc is performed through its decay to theΛ^+c K^-π^+ final state,using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7,8 and 13 TeV.The data correspond to a total integrated luminosity of 9 fb^-1.No significant signal is observed in the mass range from 3.4 to 3.8 GeV/c^2.Upper limits are set at 95%credibility level on the ratio of the ■^+cc production cross-section times the branching fraction to that ofΛ^+c and ■^++cc baryons.The limits are determined as functions of the ■^+cc mass for different lifetime hypotheses,in the rapidity range from 2.0 to 4.5 and the transverse momentum range from 4 to 15 GeV/c. 展开更多
关键词 charmed baryons limits on production of particles charmed quarks experimental tests
原文传递
Measurement of Ξcc++ production in pp collisions at s1/2=13 TeV 被引量:2
19
作者 R.Aaij C.Abellán Beteta +903 位作者 T.Ackernley B.Adeva M.Adinolfi H.Afsharnia C.A.Aidala S.Aiola Z.Ajaltouni S.Akar P.Albicocco J.Albrecht F.Alessio M.Alexander A.Alfonso Albero G.Alkhazov P.Alvarez Cartelle A.A.Alves Jr S.Amato Y.Amhis L.An L.Anderlini G.Andreassi M.Andreotti F.Archilli A.Artamonov M.Artuso K.Arzymatov E.Aslanides M.Atzeni B.Audurier S.Bachmann J.J.Back S.Baker V.Balagura W.Baldini A.Baranov R.J.Barlow S.Barsuk W.Barter M.Bartolini F.Baryshnikov J.M.Basels G.Bassi V.Batozskaya B.Batsukh A.Battig A.Bay M.Becker F.Bedeschi I.Bediaga A.Beiter L.J.Bel V.Belavin S.Belin V.Bellee K.Belous I.Belyaev G.Bencivenni E.Ben-Haim S.Benson S.Beranek A.Berezhnoy R.Bernet D.Berninghoff H.C.Bernstein C.Bertella E.Bertholet A.Bertolin C.Betancourt F.Betti M.O.Bettler Ia.Bezshyiko S.Bhasin J.Bhom M.S.Bieker S.Bifani P.Billoir A.Bizzeti M.Bjørn M.P.Blago T.Blake F.Blanc S.Blusk D.Bobulska V.Bocci O.Boente Garcia T.Boettcher A.Boldyrev A.Bondar N.Bondar S.Borghi M.Borisyak M.Borsato J.T.Borsuk T.J.V.Bowcock C.Bozzi M.J.Bradley S.Braun A.Brea Rodriguez M.Brodski J.Brodzicka A.Brossa Gonzalo D.Brundu E.Buchanan A.Buonaura C.Burr A.Bursche A.Butkevich J.S.Butter J.Buytaert W.Byczynski S.Cadeddu H.Cai R.Calabrese L.Calero Diaz S.Cali R.Calladine M.Calvi M.Calvo Gomez P.Camargo Magalhaes A.Camboni P.Campana D.H.Campora Perez A.F.Campoverde Quezada L.Capriotti A.Carbone G.Carboni R.Cardinale A.Cardini I.Carli P.Carniti K.Carvalho Akiba A.Casais Vidal G.Casse M.Cattaneo G.Cavallero S.Celani R.Cenci J.Cerasoli M.G.Chapman M.Charles Ph.Charpentier G.Chatzikonstantinidis M.Chefdeville V.Chekalina C.Chen S.Chen A.Chernov S.-G.Chitic V.Chobanova S.Cholak M.Chrzaszcz A.Chubykin P.Ciambrone M.F.Cicala X.Cid Vidal G.Ciezarek F.Cindolo P.E.L.Clarke M.Clemencic H.V.Cliff J.Closier J.L.Cobbledick V.Coco J.A.B.Coelho J.Cogan E.Cogneras L.Cojocariu P.Collins T.Colombo A.Comerma-Montells A.Contu N.Cooke G.Coombs S.Coquereau G.Corti C.M.Costa Sobral B.Couturier D.C.Craik J.Crkovska A.Crocombe M.Cruz Torres R.Currie C.L.Da Silva E.Dall'Occo J.Dalseno C.D'Ambrosio A.Danilina P.d'Argent A.Davis O.De Aguiar Francisco K.De Bruyn S.De Capua M.De Cian J.M.De Miranda L.De Paula M.De Serio P.De Simone J.A.de Vries C.T.Dean W.Dean D.Decamp L.Del Buono B.Delaney H.-P.Dembinski A.Dendek V.Denysenko D.Derkach O.Deschamps F.Desse F.Dettori B.Dey A.Di Canto P.Di Nezza S.Didenko H.Dijkstra V.Dobishuk F.Dordei M.Dorigo A.C.dos Reis L.Douglas A.Dovbnya K.Dreimanis M.W.Dudek L.Dufour G.Dujany P.Durante J.M.Durham D.Dutta M.Dziewiecki A.Dziurda A.Dzyuba S.Easo U.Egede V.Egorychev S.Eidelman S.Eisenhardt R.Ekelhof S.Ek-In L.Eklund S.Ely A.Ene E.Epple S.Escher S.Esen T.Evans A.Falabella J.Fan N.Farley S.Farry D.Fazzini P.Fedin M.Féo P.Fernandez Declara A.Fernandez Prieto F.Ferrari L.Ferreira Lopes F.Ferreira Rodrigues S.Ferreres Sole M.Ferrillo M.Ferro-Luzzi S.Filippov R.A.Fini M.Fiorini M.Firlej K.M.Fischer C.Fitzpatrick T.Fiutowski F.Fleuret M.Fontana F.Fontanelli R.Forty V.Franco Lima M.Franco Sevilla M.Frank C.Frei D.A.Friday J.Fu M.Fuehring W.Funk E.Gabriel A.Gallas Torreira D.Galli S.Gallorini S.Gambetta Y.Gan M.Gandelman P.Gandini Y.Gao L.M.Garcia Martin J.García Pardiñas B.Garcia Plana F.A.Garcia Rosales L.Garrido44 D.Gascon C.Gaspar D.Gerick E.Gersabeck M.Gersabeck T.Gershon D.Gerstel Ph.Ghez V.Gibson A.Gioventù O.G.Girard P.Gironell Gironell L.Giubega C.Giugliano K.Gizdov V.V.Gligorov C.Göbel D.Golubkov A.Golutvin A.Gomes P.Gorbounov I.V.Gorelov C.Gotti E.Govorkova J.P.Grabowski R.Graciani Diaz T.Grammatico L.A.Granado Cardoso E.Graugés E.Graverini G.Graziani A.Grecu R.Greim P.Griffith L.Grillo L.Gruber B.R.Gruberg Cazon C.Gu E.Gushchin A.Guth Yu.Guz T.Gys P.A.Günther T.Hadavizadeh G.Haefeli C.Haen S.C.Haines P.M.Hamilton Q.Han X.Han T.H.Hancock S.Hansmann-Menzemer N.Harnew T.Harrison R.Hart C.Hasse M.Hatch J.He M.Hecker K.Heijhoff K.Heinicke A.M.Hennequin K.Hennessy L.Henry J.Heuel A.Hicheur D.Hill M.Hilton P.H.Hopchev J.Hu W.Hu W.Huang W.Hulsbergen T.Humair R.J.Hunter M.Hushchyn D.Hutchcroft D.Hynds P.Ibis M.Idzik P.Ilten A.Inglessi K.Ivshin R.Jacobsson S.Jakobsen E.Jans B.K.Jashal A.Jawahery V.Jevtic F.Jiang M.John D.Johnson C.R.Jones B.Jost N.Jurik S.Kandybei M.Karacson J.M.Kariuki N.Kazeev M.Kecke F.Keizer M.Kelsey M.Kenzie T.Ketel B.Khanji A.Kharisova K.E.Kim T.Kirn V.S.Kirsebom S.Klaver K.Klimaszewski S.Koliiev A.Kondybayeva A.Konoplyannikov P.Kopciewicz R.Kopecna P.Koppenburg I.Kostiuk O.Kot S.Kotriakhova L.Kravchuk R.D.Krawczyk M.Kreps F.Kress S.Kretzschmar P.Krokovny W.Krupa W.Krzemien W.Kucewicz M.Kucharczyk V.Kudryavtsev H.S.Kuindersma G.J.Kunde T.Kvaratskheliya D.Lacarrere G.Lafferty A.Lai D.Lancierini J.J.Lane G.Lanfranchi C.Langenbruch O.Lantwin T.Latham F.Lazzari C.Lazzeroni R.Le Gac R.Lefèvre A.Leflat O.Leroy T.Lesiak B.Leverington H.Li L.Li X.Li Y.Li Z.Li X.Liang R.Lindner V.Lisovskyi G.Liu X.Liu D.Loh A.Loi J.Lomba Castro I.Longstaff J.H.Lopes G.Loustau G.H.Lovell Y.Lu D.Lucchesi M.Lucio Martinez Y.Luo A.Lupato E.Luppi O.Lupton A.Lusiani X.Lyu S.Maccolini F.Machefert F.Maciuc V.Macko P.Mackowiak S.Maddrell-Mander L.R.Madhan Mohan O.Maev A.Maevskiy D.Maisuzenko M.W.Majewski S.Malde B.Malecki A.Malinin T.Maltsev H.Malygina G.Manca G.Mancinelli R.Manera Escalero D.Manuzzi D.Marangotto J.Maratas J.F.Marchand U.Marconi S.Mariani C.Marin Benito M.Marinangeli P.Marino J.Marks P.J.Marshall G.Martellotti L.Martinazzoli M.Martinelli D.Martinez Santos F.Martinez Vidal A.Massafferri M.Materok R.Matev A.Mathad Z.Mathe V.Matiunin C.Matteuzzi K.R.Mattioli A.Mauri E.Maurice M.McCann L.Mcconnell A.McNab R.McNulty J.V.Mead B.Meadows C.Meaux G.Meier N.Meinert D.Melnychuk S.Meloni M.Merk A.Merli M.Mikhasenko D.A.Milanes E.Millard M.-N.Minard O.Mineev L.Minzoni S.E.Mitchell B.Mitreska D.S.Mitzel A.Mödden A.Mogini R.D.Moise T.Mombächer I.A.Monroy S.Monteil M.Morandin G.Morello M.J.Morello J.Moron A.B.Morris A.G.Morris R.Mountain H.Mu F.Muheim M.Mukherjee M.Mulder D.Müller K.Müller C.H.Murphy D.Murray P.Muzzetto P.Naik T.Nakada R.Nandakumar T.Nanut I.Nasteva M.Needham N.Neri S.Neubert N.Neufeld R.Newcombe T.D.Nguyen C.Nguyen-Mau E.M.Niel S.Nieswand N.Nikitin N.S.Nolte C.Nunez A.Oblakowska-Mucha V.Obraztsov S.Ogilvy D.P.O'Hanlon R.Oldeman C.J.G.Onderwater J.D.Osborn A.Ossowska J.M.Otalora Goicochea T.Ovsiannikova P.Owen49 A.Oyanguren P.R.Pais48 T.Pajero A.Palano M.Palutan G.Panshin A.Papanestis M.Pappagallo L.L.Pappalardo C.Pappenheimer W.Parker C.Parkes G.Passaleva A.Pastore M.Patel C.Patrignani A.Pearce A.Pellegrino M.Pepe Altarelli S.Perazzini D.Pereima P.Perret L.Pescatore K.Petridis A.Petrolini A.Petrov S.Petrucci M.Petruzzo B.Pietrzyk G.Pietrzyk M.Pili D.Pinci J.Pinzino F.Pisani A.Piucci V.Placinta S.Playfer J.Plews M.Plo Casasus F.Polci M.Poli Lener M.Poliakova A.Poluektov N.Polukhina I.Polyakov E.Polycarpo G.J.Pomery S.Ponce A.Popov D.Popov S.Poslavskii K.Prasanth L.Promberger C.Prouve V.Pugatch A.Puig Navarro H.Pullen G.Punzi W.Qian J.Qin R.Quagliani B.Quintana N.V.Raab R.I.Rabadan Trejo B.Rachwal J.H.Rademacker M.Rama M.Ramos Pernas M.S.Rangel F.Ratnikov G.Raven M.Reboud F.Redi F.Reiss C.Remon Alepuz Z.Ren V.Renaudin S.Ricciardi D.S.Richards S.Richards K.Rinnert P.Robbe A.Robert A.B.Rodrigues E.Rodrigues J.A.Rodriguez Lopez M.Roehrken S.Roiser A.Rollings V.Romanovskiy M.Romero Lamas A.Romero Vidal J.D.Roth M.Rotondo M.S.Rudolph T.Ruf J.Ruiz Vidal A.Ryzhikov J.Ryzka J.J.Saborido Silva N.Sagidova N.Sahoo B.Saitta C.Sanchez Gras C.Sanchez Mayordomo R.Santacesaria C.Santamarina Rios M.Santimaria E.Santovetti G.Sarpis A.Sarti C.Satriano A.Satta M.Saur D.Savrina L.G.Scantlebury Smead S.Schael M.Schellenberg M.Schiller H.Schindler M.Schmelling T.Schmelzer B.Schmidt O.Schneider A.Schopper H.F.Schreiner M.Schubiger S.Schulte M.H.Schune R.Schwemmer B.Sciascia A.Sciubba S.Sellam A.Semennikov A.Sergi N.Serra J.Serrano L.Sestini A.Seuthe P.Seyfert D.M.Shangase M.Shapkin L.Shchutska T.Shears L.Shekhtman V.Shevchenko E.Shmanin J.D.Shupperd B.G.Siddi R.Silva Coutinho L.Silva de Oliveira G.Simi S.Simone I.Skiba N.Skidmore T.Skwarnicki M.W.Slater J.G.Smeaton A.Smetkina E.Smith I.T.Smith M.Smith A.Snoch M.Soares L.Soares Lavra M.D.Sokoloff F.J.P.Soler B.Souza De Paula B.Spaan E.Spadaro Norella P.Spradlin F.Stagni M.Stahl S.Stahl P.Stefko O.Steinkamp S.Stemmle O.Stenyakin M.Stepanova H.Stevens S.Stone S.Stracka M.E.Stramaglia M.Straticiuc S.Strokov j.sun L.Sun Y.Sun P.Svihra K.Swientek A.Szabelski T.Szumlak M.Szymanski S.Taneja Z.Tang T.Tekampe F.Teubert E.Thomas K.A.Thomson M.J.Tilley V.Tisserand S.T'Jampens M.Tobin S.Tolk L.Tomassetti D.Tonelli D.Torres Machado D.Y.Tou E.Tournefier M.Traill M.T.Tran E.Trifonova C.Trippl A.Trisovic A.Tsaregorodtsev G.Tuci A.Tully N.Tuning A.Ukleja A.Usachov A.Ustyuzhanin U.Uwer A.Vagner V.Vagnoni A.Valassi G.Valenti M.van Beuzekom H.Van Hecke E.van Herwijnen C.B.Van Hulse M.van Veghel R.Vazquez Gomez P.Vazquez Regueiro C.Vázquez Sierra S.Vecchi J.J.Velthuis M.Veltri A.Venkateswaran M.Vernet M.Veronesi M.Vesterinen J.V.Viana Barbosa D.Vieira M.Vieites Diaz H.Viemann X.Vilasis-Cardona A.Vitkovskiy V.Volkov A.Vollhardt D.Vom Bruch A.Vorobyev V.Vorobyev N.Voropaev R.Waldi J.Walsh J.Wang J.Wang J.Wang M.Wang Y.Wang Z.Wang D.R.Ward H.M.Wark N.K.Watson D.Websdale A.Weiden C.Weisser B.D.C.Westhenry D.J.White M.Whitehead D.Wiedner G.Wilkinson M.Wilkinson I.Williams M.Williams M.R.J.Williams T.Williams F.F.Wilson W.Wislicki M.Witek L.Witola G.Wormser S.A.Wotton H.Wu K.Wyllie Z.Xiang D.Xiao Y.Xie H.Xing A.Xu L.Xu M.Xu Q.Xu Z.Xu Z.Yang Z.Yang Y.Yao L.E.Yeomans H.Yin J.Yu X.Yuan O.Yushchenko K.A.Zarebski M.Zavertyaev M.Zdybal M.Zeng D.Zhang L.Zhang S.Zhang W.C.Zhang Y.Zhang A.Zhelezov Y.Zheng X.Zhou Y.Zhou X.Zhu V.Zhukov J.B.Zonneveld S.Zucchelli 《Chinese Physics C》 SCIE CAS CSCD 2020年第2期13-23,共11页
The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in... The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in this measurement correspond to an integrated luminosity of 1.7fb^-1,recorded by the LHCb experiment during 2016.The ratio of the ■ production cross-section times the branching fraction of the■→∧^+cK^-π^+ π^+decay relative to the prompt ∧^+c production cross-section is found to be(2.22±0.27±0.29)×10^-4,assuming the central value of the measured lifetime,where the first uncertainty is statistical and the second systematic. 展开更多
关键词 doubly charmed baryons hadron production QCD
原文传递
Search for the doubly heavy baryon Ξ_(bc)^(+)→ decaying to J/ψΞ_(c)^(+) 被引量:1
20
作者 R.Aaij A.S.W.Abdelmotteleb +1013 位作者 C.Abellan Beteta F.Abudinén T.Ackernley B.Adeva M.Adinolfi H.Afsharnia C.Agapopoulou C.A.Aidala S.Aiola Z.Ajaltouni S.Akar K.Akiba J.Albrecht F.Alessio M.Alexander A.Alfonso Albero Z.Aliouche P.Alvarez Cartelle S.Amato J.L.Amey Y.Amhis L.An L.Anderlini M.Andersson A.Andreianov M.Andreotti D.Andreou D.Ao F.Archilli A.Artamonov M.Artuso E.Aslanides M.Atzeni B.Audurier S.Bachmann M.Bachmayer J.J.Back A.Bailly-reyre P.Baladron Rodriguez V.Balagura W.Baldini J.Baptista de Souza Leite M.Barbetti R.J.Barlow S.Barsuk W.Barter M.Bartolini F.Baryshnikov J.M.Basels G.Bassi B.Batsukh A.Battig A.Bay A.Beck M.Becker F.Bedeschi I.B.Bediaga A.Beiter V.Belavin S.Belin V.Bellee K.Belous I.Belov I.Belyaev G.Bencivenni E.Ben-Haim A.Berezhnoy R.Bernet D.Berninghoff H.C.Bernstein C.Bertella A.Bertolin C.Betancourt F.Betti Ia.Bezshyiko S.Bhasin J.Bhom L.Bian M.S.Bieker N.V.Biesuz S.Bifani P.Billoir A.Biolchini M.Birch F.C.R.Bishop A.Bitadze A.Bizzeti M.P.Blago T.Blake F.Blanc S.Blusk D.Bobulska J.A.Boelhauve O.Boente Garcia T.Boettcher A.Boldyrev N.Bondar S.Borghi M.Borsato J.T.Borsuk S.A.Bouchiba T.J.V.Bowcock A.Boyer C.Bozzi M.J.Bradley S.Braun A.Brea Rodriguez J.Brodzicka A.Brossa Gonzalo D.Brundu A.Buonaura L.Buonincontri A.T.Burke C.Burr A.Bursche A.Butkevich J.S.Butter J.Buytaert W.Byczynski S.Cadeddu H.Cai R.Calabrese L.Calefice S.Cali R.Calladine M.Calvi M.Calvo Gomez P.Camargo Magalhaes P.Campana D.H.Campora Perez A.F.Campoverde Quezada S.Capelli L.Capriotti A.Carbone G.Carboni R.Cardinale A.Cardini I.Carli P.Carniti L.Carus A.Casais Vidal R.Caspary G.Casse M.Cattaneo G.Cavallero V.Cavallini S.Celani J.Cerasoli D.Cervenkov A.J.Chadwick M.G.Chapman M.Charles Ph.Charpentier C.A.Chavez Barajas M.Chefdeville C.Chen S.Chen A.Chernov S.Chernyshenko V.Chobanova S.Cholak M.Chrzaszcz A.Chubykin V.Chulikov P.Ciambrone M.F.Cicala X.Cid Vidal G.Ciezarek G.Ciullo P.E.L.Clarke M.Clemencic H.V.Cliff J.Closier J.L.Cobbledick V.Coco J.A.B.Coelho J.Cogan E.Cogneras L.Cojocariu P.Collins T.Colombo L.Congedo A.Contu N.Cooke G.Coombs I.Corredoira G.Corti B.Couturier D.C.Craik J.Crkovská M.Cruz Torres R.Currie C.L.Da Silva S.Dadabaev L.Dai E.Dall'Occo J.Dalseno C.D'Ambrosio A.Danilina P.d'Argent J.E.Davies A.Davis O.De Aguiar Francisco J.de Boer K.De Bruyn S.De Capua M.De Cian U.De Freitas Carneiro Da Graca E.De Lucia J.M.De Miranda L.De Paula M.De Serio D.De Simone P.De Simone F.De Vellis J.A.de Vries C.T.Dean F.Debernardis D.Decamp V.Dedu L.Del Buono B.Delaney H.-P.Dembinski V.Denysenko O.Deschamps F.Dettori B.Dey A.Di Cicco P.Di Nezza S.Didenko L.Dieste Maronas S.Ding V.Dobishuk A.Dolmatov C.Dong A.M.Donohoe F.Dordei A.C.dos Reis L.Douglas A.G.Downes M.W.Dudek L.Dufour V.Duk P.Durante J.M.Durham D.Dutta A.Dziurda A.Dzyuba S.Easo U.Egede V.Egorychev S.Eidelman S.Eisenhardt S.Ek-In L.Eklund S.Ely A.Ene E.Epple S.Escher J.Eschle S.Esen T.Evans L.N.Falcao Y.Fan B.Fang S.Farry D.Fazzini M.Feo A.D.Fernez F.Ferrari L.Ferreira Lopes F.Ferreira Rodrigues S.Ferreres Sole M.Ferrillo M.Ferro-Luzzi S.Filippov R.A.Fini M.Fiorini M.Firlej K.M.Fischer D.S.Fitzgerald C.Fitzpatrick T.Fiutowski F.Fleuret M.Fontana F.Fontanelli R.Forty D.Foulds-Holt V.Franco Lima M.Franco Sevilla M.Frank E.Franzoso G.Frau C.Frei D.A.Friday J.Fu Q.Fuehring E.Gabriel G.Galati A.Gallas Torreira D.Galli S.Gambetta Y.Gan M.Gandelman P.Gandini Y.Gao M.Garau L.M.Garcia Martin P.Garcia Moreno J.García Pardiäas B.Garcia Plana F.A.Garcia Rosales L.Garrido C.Gaspar R.E.Geertsema D.Gerick L.L.Gerken E.Gersabeck M.Gersabeck T.Gershon L.Giambastiani V.Gibson H.K.Giemza A.L.Gilman M.Giovannetti A.Gioventù P.Gironella Gironell C.Giugliano M.A.Giza K.Gizdov E.L.Gkougkousis V.V.Gligorov C.Gäbel E.Golobardes D.Golubkov A.Golutvin A.Gomes S.Gomez Fernandez F.Goncalves Abrantes M.Goncerz G.Gong I.V.Gorelov C.Gotti J.P.Grabowski T.Grammatico L.A.Granado Cardoso E.Graugés E.Graverini G.Graziani A.T.Grecu L.M.Greeven N.A.Grieser L.Grillo S.Gromov B.R.Gruberg Cazon C.Gu M.Guarise M.Guittiere P.A.Günther E.Gushchin A.Guth Y.Guz T.Gys T.Hadavizadeh G.Haefeli C.Haen J.Haimberger S.C.Haines T.Halewood-leagas M.M.Halvorsen P.M.Hamilton J.Hammerich Q.Han X.Han E.B.Hansen S.Hansmann-Menzemer L.Hao N.Harnew T.Harrison C.Hasse M.Hatch J.He K.Heijhoff K.Heinicke R.D.L.Henderson A.M.Hennequin K.Hennessy L.Henry J.Heuel A.Hicheur D.Hill M.Hilton S.E.Hollitt R.Hou Y.Hou J.Hu J.Hu W.Hu X.Hu W.Huang X.Huang W.Hulsbergen R.J.Hunter M.Hushchyn D.Hutchcroft P.Ibis M.Idzik D.Ilin P.Ilten A.Inglessi A.Iniukhin A.Ishteev K.Ivshin R.Jacobsson H.Jage S.J.Jaimes Elles S.Jakobsen E.Jans B.K.Jashal A.Jawahery V.Jevtic X.Jiang M.John D.Johnson C.R.Jones T.P.Jones B.Jost N.Jurik S.Kandybei Y.Kang M.Karacson D.Karpenkov M.Karpov J.W.Kautz F.Keizer D.M.Keller M.Kenzie T.Ketel B.Khanji A.Kharisova S.Kholodenko T.Kirn V.S.Kirsebom O.Kitouni S.Klaver N.Kleijne K.Klimaszewski M.R.Kmiec S.Koliiev A.Kondybayeva A.Konoplyannikov P.Kopciewicz R.Kopecna P.Koppenburg M.Korolev I.Kostiuk O.Kot S.Kotriakhova A.Kozachuk P.Kravchenko L.Kravchuk R.D.Krawczyk M.Kreps S.Kretzschmar P.Krokovny W.Krupa W.Krzemien J.Kubat W.Kucewicz M.Kucharczyk V.Kudryavtsev G.J.Kunde D.Lacarrere G.Lafferty A.Lai A.Lampis D.Lancierini J.J.Lane R.Lane G.Lanfranchi C.Langenbruch J.Langer O.Lantwin T.Latham F.Lazzari M.Lazzaroni R.Le Gac S.H.Lee R.Lefèvre A.Leflat S.Legotin P.Lenisa O.Leroy T.Lesiak B.Leverington H.Li K.Li P.Li S.Li Y.Li Z.Li X.Liang C.Lin T.Lin R.Lindner V.Lisovskyi R.Litvinov G.Liu H.Liu Q.Liu S.Liu A.Lobo Salvia A.Loi R.Lollini J.Lomba Castro I.Longstaff J.H.Lopes S.López Soliäo G.H.Lovell Y.Lu C.Lucarelli D.Lucchesi S.Luchuk M.Lucio Martinez V.Lukashenko Y.Luo A.Lupato E.Luppi A.Lusiani K.Lynch X.-R.Lyu L.Ma R.Ma S.Maccolini F.Machefert F.Maciuc V.Macko P.Mackowiak S.Maddrell-Mander L.R.Madhan Mohan A.Maevskiy D.Maisuzenko M.W.Majewski J.J.Malczewski S.Malde B.Malecki A.Malinin T.Maltsev H.Malygina G.Manca G.Mancinelli D.Manuzzi C.A.Manzari D.Marangotto J.F.Marchand U.Marconi S.Mariani C.Marin Benito M.Marinangeli J.Marks A.M.Marshall P.J.Marshall G.Martelli G.Martellotti L.Martinazzoli M.Martinelli D.Martinez Santos F.Martinez Vidal A.Massafferri M.Materok R.Matev A.Mathad V.Matiunin C.Matteuzzi K.R.Mattioli A.Mauri E.Maurice J.Mauricio M.Mazurek M.McCann L.Mcconnell T.H.McGrath N.T.McHugh A.McNab R.McNulty J.V.Mead B.Meadows G.Meier D.Melnychuk S.Meloni M.Merk A.Merli L.Meyer Garcia M.Mikhasenko D.A.Milanes E.Millard M.Milovanovic M.-N.Minard A.Minotti S.E.Mitchell B.Mitreska D.S.Mitzel A.Mädden R.A.Mohammed R.D.Moise S.Mokhnenko T.Mombächer I.A.Monroy S.Monteil M.Morandin G.Morello M.J.Morello J.Moron A.B.Morris A.G.Morris R.Mountain H.Mu F.Muheim M.Mulder K.Müller C.H.Murphy D.Murray R.Murta P.Muzzetto P.Naik T.Nakada R.Nandakumar T.Nanut I.Nasteva M.Needham N.Neri S.Neubert N.Neufeld P.Neustroev R.Newcombe E.M.Niel S.Nieswand N.Nikitin N.S.Nolte C.Normand C.Nunez A.Oblakowska-Mucha V.Obraztsov T.Oeser D.P.O'Hanlon S.Okamura R.Oldeman F.Oliva M.E.Olivares C.J.G.Onderwater R.H.O'Neil J.M.Otalora Goicochea T.Ovsiannikova P.Owen A.Oyanguren O.Ozcelik K.O.Padeken B.Pagare P.R.Pais T.Pajero A.Palano M.Palutan Y.Pan G.Panshin A.Papanestis M.Pappagallo L.L.Pappalardo C.Pappenheimer W.Parker C.Parkes B.Passalacqua G.Passaleva A.Pastore M.Patel C.Patrignani C.J.Pawley A.Pearce A.Pellegrino M.Pepe Altarelli S.Perazzini D.Pereima A.Pereiro Castro P.Perret M.Petric K.Petridis A.Petrolini A.Petrov S.Petrucci M.Petruzzo H.Pham A.Philippov R.Piandani L.Pica M.Piccini B.Pietrzyk G.Pietrzyk M.Pili D.Pinci F.Pisani M.Pizzichemi V.Placinta J.Plews M.Plo Casasus F.Polci M.Poli Lener M.Poliakova A.Poluektov N.Polukhina I.Polyakov E.Polycarpo S.Ponce D.Popov S.Popov S.Poslavskii K.Prasanth L.Promberger C.Prouve V.Pugatch V.Puill G.Punzi H.R.Qi W.Qian N.Qin S.Qu R.Quagliani N.V.Raab R.I.Rabadan Trejo B.Rachwal J.H.Rademacker R.Rajagopalan M.Rama M.Ramos Pernas M.S.Rangel F.Ratnikov G.Raven M.Rebollo De Miguel F.Redi F.Reiss C.Remon Alepuz Z.Ren V.Renaudin P.K.Resmi R.Ribatti A.M.Ricci S.Ricciardi K.Rinnert P.Robbe G.Robertson A.B.Rodrigues E.Rodrigues J.A.Rodriguez Lopez E.Rodriguez Rodriguez A.Rollings P.Roloff V.Romanovskiy M.Romero Lamas A.Romero Vidal J.D.Roth M.Rotondo M.S.Rudolph T.Ruf R.A.Ruiz Fernandez J.Ruiz Vidal A.Ryzhikov J.Ryzka J.J.Saborido Silva N.Sagidova N.Sahoo B.Saitta M.Salomoni C.Sanchez Gras I.Sanderswood R.Santacesaria C.Santamarina Rios M.Santimaria E.Santovetti D.Saranin G.Sarpis M.Sarpis A.Sarti C.Satriano A.Satta M.Saur D.Savrina H.Sazak L.G.Scantlebury Smead A.Scarabotto S.Schael S.Scherl M.Schiller H.Schindler M.Schmelling B.Schmidt S.Schmitt O.Schneider A.Schopper M.Schubiger S.Schulte M.H.Schune R.Schwemmer B.Sciascia A.Sciuccati S.Sellam A.Semennikov M.Senghi Soares A.Sergi N.Serra L.Sestini A.Seuthe Y.Shang D.M.Shangase M.Shapkin I.Shchemerov L.Shchutska T.Shears L.Shekhtman Z.Shen S.Sheng V.Shevchenko E.B.Shields Y.Shimizu E.Shmanin J.D.Shupperd B.G.Siddi R.Silva Coutinho G.Simi S.Simone M.Singla N.Skidmore R.Skuza T.Skwarnicki M.W.Slater I.Slazyk J.C.Smallwood J.G.Smeaton E.Smith M.Smith A.Snoch L.Soares Lavra M.D.Sokoloff F.J.P.Soler A.Solomin A.Solovev I.Solovyev F.L.Souza De Almeida B.Souza De Paula B.Spaan E.Spadaro Norella E.Spiridenkov P.Spradlin V.Sriskaran F.Stagni M.Stahl S.Stahl S.Stanislaus O.Steinkamp O.Stenyakin H.Stevens S.Stone D.Strekalina F.Suljik j.sun L.Sun Y.Sun P.Svihra P.N.Swallow K.Swientek A.Szabelski T.Szumlak M.Szymanski S.Taneja A.R.Tanner M.D.Tat A.Terentev F.Teubert E.Thomas D.J.D.Thompson K.A.Thomson H.Tilquin V.Tisserand S.T'Jampens M.Tobin L.Tomassetti G.Tonani X.Tong D.Torres Machado D.Y.Tou E.Trifonova S.M.Trilov C.Trippl G.Tuci A.Tully N.Tuning A.Ukleja D.J.Unverzagt E.Ursov A.Usachov A.Ustyuzhanin U.Uwer A.Vagner V.Vagnoni A.Valassi G.Valenti N.Valls Canudas M.van Beuzekom M.Van Dijk H.Van Hecke E.van Herwijnen M.van Veghel R.Vazquez Gomez P.Vazquez Regueiro C.Vázquez Sierra S.Vecchi J.J.Velthuis M.Veltri A.Venkateswaran M.Veronesi M.Vesterinen D.Vieira M.Vieites Diaz X.Vilasis-Cardona E.Vilella Figueras A.Villa P.Vincent F.C.Volle D.vom Bruch A.Vorobyev V.Vorobyev N.Voropaev K.Vos R.Waldi J.Walsh C.Wang J.Wang J.Wang J.Wang J.Wang M.Wang R.Wang Y.Wang Z.Wang Z.Wang Z.Wang J.A.Ward N.K.Watson D.Websdale C.Weisser B.D.C.Westhenry D.J.White M.Whitehead A.R.Wiederhold D.Wiedner G.Wilkinson M.K.Wilkinson I.Williams M.Williams M.R.J.Williams R.Williams F.F.Wilson W.Wislicki M.Witek L.Witola C.P.Wong G.Wormser S.A.Wotton H.Wu K.Wyllie Z.Xiang D.Xiao Y.Xie A.Xu J.Xu L.Xu M.Xu Q.Xu Z.Xu Z.Xu D.Yang S.Yang Y.Yang Z.Yang Z.Yang L.E.Yeomans H.Yin J.Yu X.Yuan E.Zaffaroni M.Zavertyaev M.Zdybal O.Zenaiev M.Zeng D.Zhang L.Zhang S.Zhang S.Zhang Y.Zhang Y.Zhang A.Zharkova A.Zhelezov Y.Zheng T.Zhou X.Zhou Y.Zhou V.Zhovkovska X.Zhu X.Zhu Z.Zhu V.Zhukov Q.Zou S.Zucchelli D.Zuliani G.Zunica LHCb Collaboration 《Chinese Physics C》 SCIE CAS CSCD 2023年第9期1-13,共13页
A first search for the Ξ_(bc)^(+)J/ψΞ_(c)^(+) decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb−1 recorded at centre-of-mass... A first search for the Ξ_(bc)^(+)J/ψΞ_(c)^(+) decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb−1 recorded at centre-of-mass energies of 7, 8, and 13 TeV. Two peaking structures are seen with a local (global) significance of 4.3(2.8) and 4.1(2.4) standard deviations at masses of 6571 and 6694 MeV/c2, respectively. Upper limits are set on the Ξ+bc baryon production cross-section times the branching fraction relative to that of the B+c→J/ψD+s decay at centre-of-mass energies of 8 and 13 TeV, in the Ξ+bc and in the B+c rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to 20GeV/c, respectively. Upper limits are presented as a function of the Ξ+bc mass and lifetime. 展开更多
关键词 QCD B physics charm physics spectroscopy
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部